|
|
@@ -0,0 +1,353 @@
|
|
|
+import asyncio
|
|
|
+import json
|
|
|
+import logging
|
|
|
+import multiprocessing as mp
|
|
|
+import os
|
|
|
+import pathlib
|
|
|
+import subprocess
|
|
|
+import time
|
|
|
+from concurrent.futures import ProcessPoolExecutor
|
|
|
+
|
|
|
+from tqdm import tqdm
|
|
|
+from utils import download_data, download_tools, encode_question, eval_answer, get_data
|
|
|
+
|
|
|
+from opendevin.controller.state.state import State
|
|
|
+from opendevin.core.config import config, get_llm_config_arg, get_parser
|
|
|
+from opendevin.core.logger import get_console_handler
|
|
|
+from opendevin.core.logger import opendevin_logger as logger
|
|
|
+from opendevin.core.main import main
|
|
|
+from opendevin.events.action import MessageAction
|
|
|
+from opendevin.events.serialization.event import event_to_dict
|
|
|
+
|
|
|
+
|
|
|
+def cleanup():
|
|
|
+ print('Cleaning up child processes...')
|
|
|
+ for process in mp.active_children():
|
|
|
+ print(f'Terminating child process: {process.name}')
|
|
|
+ process.terminate()
|
|
|
+ process.join()
|
|
|
+
|
|
|
+
|
|
|
+def codeact_user_response(state: State) -> str:
|
|
|
+ msg = (
|
|
|
+ 'Please continue working on the task on whatever approach you think is suitable.\n'
|
|
|
+ 'When you think you finished the task, respond with `Finish[answer]` where you include your answer in `[]`\n'
|
|
|
+ 'IMPORTANT: YOU SHOULD NEVER ASK FOR HUMAN HELP OR USE THE INTERNET TO SOLVE THIS TASK.\n'
|
|
|
+ )
|
|
|
+ if state.history:
|
|
|
+ user_msgs = [
|
|
|
+ action
|
|
|
+ for action, _ in state.history
|
|
|
+ if isinstance(action, MessageAction) and action.source == 'user'
|
|
|
+ ]
|
|
|
+ if len(user_msgs) >= 2:
|
|
|
+ # let the agent know that it can give up when it has tried 3 times
|
|
|
+ return (
|
|
|
+ msg
|
|
|
+ + 'If you want to give up, run: <execute_bash> exit </execute_bash>.\n'
|
|
|
+ )
|
|
|
+ return msg
|
|
|
+
|
|
|
+
|
|
|
+def monologue_user_response(state: State) -> str:
|
|
|
+ raise NotImplementedError('MonologueAgent should never ask for user responses.')
|
|
|
+
|
|
|
+
|
|
|
+AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
|
|
|
+ 'CodeActAgent': codeact_user_response,
|
|
|
+ 'MonologueAgent': monologue_user_response,
|
|
|
+}
|
|
|
+
|
|
|
+AGENT_CLS_TO_INST_SUFFIX = {
|
|
|
+ 'CodeActAgent': 'When you think you have completed the request, please run the following command: <execute_bash> exit </execute_bash>.\n'
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+def process_instance(task, agent_class, metadata, reset_logger: bool = True):
|
|
|
+ # create process-specific workspace dir
|
|
|
+ # we will create a workspace directory for EACH process
|
|
|
+ # so that different agent don't interfere with each other.
|
|
|
+ workspace_mount_path = config.workspace_mount_path
|
|
|
+ pathlib.Path(workspace_mount_path).mkdir(parents=True, exist_ok=True)
|
|
|
+
|
|
|
+ # Setup the logger properly, so you can run multi-processing to parallize the evaluation
|
|
|
+ eval_output_dir = metadata['eval_output_dir']
|
|
|
+ qid = task['qid']
|
|
|
+ question = task['question']
|
|
|
+ answer = task['answer']
|
|
|
+ if reset_logger:
|
|
|
+ # Set up logger
|
|
|
+ log_file = os.path.join(eval_output_dir, 'logs', f'instance_{qid}.log')
|
|
|
+ # Remove all existing handlers from logger
|
|
|
+ for handler in logger.handlers[:]:
|
|
|
+ logger.removeHandler(handler)
|
|
|
+ # add back the console handler to print ONE line
|
|
|
+ logger.addHandler(get_console_handler())
|
|
|
+ logger.info(
|
|
|
+ f'Starting evaluation for instance {qid}.\nHint: run "tail -f {log_file}" to see live logs in a seperate shell'
|
|
|
+ )
|
|
|
+ # Remove all existing handlers from logger
|
|
|
+ for handler in logger.handlers[:]:
|
|
|
+ logger.removeHandler(handler)
|
|
|
+ file_handler = logging.FileHandler(log_file)
|
|
|
+ file_handler.setFormatter(
|
|
|
+ logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
|
|
|
+ )
|
|
|
+ logger.addHandler(file_handler)
|
|
|
+ logger.info(f'Process-specific workspace mounted at {workspace_mount_path}')
|
|
|
+
|
|
|
+ # Prepare instruction
|
|
|
+ instruction = encode_question(question)
|
|
|
+ instruction += 'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n'
|
|
|
+ # NOTE: You can actually set slightly different instruction for different agents
|
|
|
+ instruction += AGENT_CLS_TO_INST_SUFFIX.get(agent_class, '')
|
|
|
+ # logger.info(f'Instruction:\n{instruction}', extra={'msg_type': 'OBSERVATION'})
|
|
|
+
|
|
|
+ # Here's how you can run the agent (similar to the `main` function) and get the final task state
|
|
|
+ state: State = asyncio.run(
|
|
|
+ main(
|
|
|
+ instruction,
|
|
|
+ fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN.get(agent_class),
|
|
|
+ )
|
|
|
+ )
|
|
|
+ # ======= Attempt to evaluate the agent's edits =======
|
|
|
+ # If you are working on simplier benchmark that only evaluates the final model output (e.g., in a MessageAction)
|
|
|
+ # You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation.
|
|
|
+
|
|
|
+ if state is None:
|
|
|
+ raise ValueError('State should not be None.')
|
|
|
+
|
|
|
+ model_answer_raw = ''
|
|
|
+ for act, _ in reversed(state.history):
|
|
|
+ if isinstance(act, MessageAction) and act.source == 'agent':
|
|
|
+ model_answer_raw = act.content
|
|
|
+ break
|
|
|
+ # attempt to parse model_answer
|
|
|
+ correct = eval_answer(str(model_answer_raw), str(answer))
|
|
|
+ metrics = state.metrics.get() if state.metrics else None
|
|
|
+ logger.info(f'Final message: {model_answer_raw} | Correctness: {correct}')
|
|
|
+ # Save the output
|
|
|
+ output = {
|
|
|
+ 'qid': qid,
|
|
|
+ 'text': model_answer_raw,
|
|
|
+ 'correct': correct,
|
|
|
+ 'answer_id': 'None',
|
|
|
+ 'model_id': metadata['model_name'],
|
|
|
+ 'metadata': metadata,
|
|
|
+ 'history': [
|
|
|
+ (event_to_dict(action), event_to_dict(obs)) for action, obs in state.history
|
|
|
+ ],
|
|
|
+ 'metrics': metrics,
|
|
|
+ 'error': state.error if state and state.error else None,
|
|
|
+ }
|
|
|
+ return output
|
|
|
+
|
|
|
+
|
|
|
+if __name__ == '__main__':
|
|
|
+ parser = get_parser()
|
|
|
+ parser.add_argument(
|
|
|
+ '--dataset',
|
|
|
+ type=str,
|
|
|
+ help='Which dataset to evaluate from ToolQA. ToolQA contains 8 datasets, namely agenda, airbnb, coffee, dblp, flight, gsm8k, scirex, yelp. For example, the default is --dataset flight.',
|
|
|
+ default='flight',
|
|
|
+ )
|
|
|
+ parser.add_argument(
|
|
|
+ '--hardness',
|
|
|
+ type=str,
|
|
|
+ help='Which level of difficulty to evaluate from ToolQA. ToolQA contains 2 levels of hardness, namely easy and hard. For example, the default is --hardness easy.',
|
|
|
+ default='easy',
|
|
|
+ )
|
|
|
+ parser.add_argument(
|
|
|
+ '--wolfram_alpha_appid',
|
|
|
+ type=str,
|
|
|
+ help='wolfram alpha appid to use for wolfram alpha related tests',
|
|
|
+ default='YOUR_WOLFRAMALPHA_APPID',
|
|
|
+ )
|
|
|
+ args, _ = parser.parse_known_args()
|
|
|
+ if args.directory:
|
|
|
+ config.workspace_base = os.path.abspath(args.directory)
|
|
|
+ print(f'Setting workspace base to {config.workspace_base}')
|
|
|
+ # Check https://github.com/OpenDevin/OpenDevin/blob/main/evaluation/swe_bench/README.md#configure-opendevin-and-your-llm
|
|
|
+ # for details of how to set `llm_config`
|
|
|
+ if args.llm_config:
|
|
|
+ specified_llm_config = get_llm_config_arg(args.llm_config)
|
|
|
+ if specified_llm_config:
|
|
|
+ config.llm = specified_llm_config
|
|
|
+ logger.info(f'Config for evaluation: {config}')
|
|
|
+ agent_class = args.agent_cls
|
|
|
+ assert (
|
|
|
+ agent_class in AGENT_CLS_TO_FAKE_USER_RESPONSE_FN
|
|
|
+ ), f'Unsupported agent class: {agent_class}'
|
|
|
+ model_name = config.llm.model.split('/')[-1]
|
|
|
+ max_iterations = args.max_iterations
|
|
|
+ eval_note = ''
|
|
|
+ if args.eval_note is not None:
|
|
|
+ eval_note += '_N_' + args.eval_note
|
|
|
+ eval_output_dir = os.path.join(
|
|
|
+ args.eval_output_dir,
|
|
|
+ 'toolqa',
|
|
|
+ agent_class,
|
|
|
+ model_name + '_maxiter_' + str(max_iterations) + eval_note,
|
|
|
+ )
|
|
|
+ pathlib.Path(eval_output_dir).mkdir(parents=True, exist_ok=True)
|
|
|
+ pathlib.Path(os.path.join(eval_output_dir, 'logs')).mkdir(
|
|
|
+ parents=True, exist_ok=True
|
|
|
+ )
|
|
|
+ logger.info(f'Using evaluation output directory: {eval_output_dir}')
|
|
|
+
|
|
|
+ dataset = ''
|
|
|
+ hardness = ''
|
|
|
+ dataset_choices = [
|
|
|
+ 'agenda',
|
|
|
+ 'airbnb',
|
|
|
+ 'coffee',
|
|
|
+ 'dblp',
|
|
|
+ 'flight',
|
|
|
+ 'gsm8k',
|
|
|
+ 'scirex',
|
|
|
+ 'yelp',
|
|
|
+ 'genda',
|
|
|
+ ]
|
|
|
+ if args.dataset in dataset_choices:
|
|
|
+ dataset = args.dataset
|
|
|
+ else:
|
|
|
+ raise ValueError(
|
|
|
+ 'Please choose from agenda, airbnb, coffee, dblp, flight, gsm8k, scirex, yelp for dataset.'
|
|
|
+ )
|
|
|
+ if args.hardness == 'easy':
|
|
|
+ hardness = 'easy'
|
|
|
+ elif args.hardness == 'hard':
|
|
|
+ hardness = 'hard'
|
|
|
+ else:
|
|
|
+ raise ValueError('Please choose from easy and hard for hardness.')
|
|
|
+
|
|
|
+ logger.info(f'Evaluating ToolQA {dataset} {hardness} test')
|
|
|
+ # workspace_mount_path = os.path.join(config.workspace_mount_path, '_eval_workspace')
|
|
|
+ workspace_mount_path = config.workspace_mount_path
|
|
|
+ pathlib.Path(workspace_mount_path).mkdir(parents=True, exist_ok=True)
|
|
|
+ toolqa_test = get_data(dataset, hardness)
|
|
|
+ toolqa_data_path = download_data(workspace_mount_path)
|
|
|
+ toolqa_tool_path = download_tools(workspace_mount_path, args.wolfram_alpha_appid)
|
|
|
+
|
|
|
+ # TEST METADATA
|
|
|
+ metadata = {
|
|
|
+ 'dataset': dataset,
|
|
|
+ 'hardness': hardness,
|
|
|
+ 'agent_class': agent_class,
|
|
|
+ 'model_name': model_name,
|
|
|
+ 'max_iterations': max_iterations,
|
|
|
+ 'eval_output_dir': eval_output_dir,
|
|
|
+ 'start_time': time.strftime('%Y-%m-%d %H:%M:%S'),
|
|
|
+ # get the commit id of current repo for reproduciblity
|
|
|
+ 'git_commit': subprocess.check_output(['git', 'rev-parse', 'HEAD'])
|
|
|
+ .decode('utf-8')
|
|
|
+ .strip(),
|
|
|
+ }
|
|
|
+ logger.info(f'Metadata: {metadata}')
|
|
|
+ with open(
|
|
|
+ os.path.join(eval_output_dir, f'metadata_{dataset}_{hardness}.json'), 'w'
|
|
|
+ ) as f:
|
|
|
+ json.dump(metadata, f)
|
|
|
+ # LIMIT EVALUATION
|
|
|
+ eval_n_limit = args.eval_n_limit
|
|
|
+ if eval_n_limit:
|
|
|
+ toolqa_test = toolqa_test[:eval_n_limit]
|
|
|
+ logger.info(
|
|
|
+ f'Limiting evaluation to a total of first {eval_n_limit} instances.'
|
|
|
+ )
|
|
|
+ output_file = os.path.join(
|
|
|
+ eval_output_dir, f'output_{model_name}_{dataset}_{hardness}.jsonl'
|
|
|
+ )
|
|
|
+ logger.info(f'Writing evaluation output to {output_file}')
|
|
|
+ finished_task_ids = set()
|
|
|
+ if os.path.exists(output_file):
|
|
|
+ with open(output_file, 'r') as f:
|
|
|
+ for line in f:
|
|
|
+ task = json.loads(line)
|
|
|
+ finished_task_ids.add(task['qid'])
|
|
|
+ logger.warning(
|
|
|
+ f'Output file {output_file} already exists. Loaded {len(finished_task_ids)} finished instances.'
|
|
|
+ )
|
|
|
+ output_fp = open(output_file, 'a')
|
|
|
+ logger.info(
|
|
|
+ f'Evaluation started with Agent {agent_class}, model {model_name}, max iterations {max_iterations}.'
|
|
|
+ )
|
|
|
+ # =============================================
|
|
|
+ # filter out finished instances
|
|
|
+ new_toolqa_test = []
|
|
|
+ for task in toolqa_test:
|
|
|
+ qid = task['qid']
|
|
|
+ if qid in finished_task_ids:
|
|
|
+ logger.info(f'Skipping instance {qid} as it is already finished.')
|
|
|
+ continue
|
|
|
+ new_toolqa_test.append(task)
|
|
|
+ finished_task_number = len(finished_task_ids)
|
|
|
+ toolqa_test = new_toolqa_test
|
|
|
+ logger.info(
|
|
|
+ f'Finished instances: {finished_task_number}, Remaining instances: {len(toolqa_test)}'
|
|
|
+ )
|
|
|
+
|
|
|
+ # =============================================
|
|
|
+ pbar = tqdm(total=len(toolqa_test))
|
|
|
+
|
|
|
+ # This function tracks the progress AND write the output to a JSONL file
|
|
|
+ def update_progress(future):
|
|
|
+ pbar.update(1)
|
|
|
+ output = future.result()
|
|
|
+ pbar.set_description(f'Instance {output["qid"]}')
|
|
|
+ pbar.set_postfix_str(f'Test Result: {output["correct"]}')
|
|
|
+ logger.info(
|
|
|
+ f'Finished evaluation for instance {output["qid"]}: {output["correct"]}'
|
|
|
+ )
|
|
|
+ output_fp.write(json.dumps(output) + '\n')
|
|
|
+ output_fp.flush()
|
|
|
+ finished_task_ids.add(output['qid'])
|
|
|
+
|
|
|
+ # This sets the multi-processing
|
|
|
+ num_workers = args.eval_num_workers
|
|
|
+ logger.info(f'Using {num_workers} workers for evaluation.')
|
|
|
+ try:
|
|
|
+ with ProcessPoolExecutor(num_workers) as executor:
|
|
|
+ futures = []
|
|
|
+ # This is how we perform multi-processing
|
|
|
+ for task in toolqa_test:
|
|
|
+ try:
|
|
|
+ future = executor.submit(
|
|
|
+ process_instance,
|
|
|
+ task,
|
|
|
+ agent_class,
|
|
|
+ metadata,
|
|
|
+ reset_logger=bool(num_workers > 1),
|
|
|
+ )
|
|
|
+ future.add_done_callback(update_progress)
|
|
|
+ futures.append(future)
|
|
|
+ except Exception:
|
|
|
+ continue
|
|
|
+ # Wait for all futures to complete
|
|
|
+ for future in futures:
|
|
|
+ try:
|
|
|
+ future.result()
|
|
|
+ except Exception:
|
|
|
+ continue
|
|
|
+ except KeyboardInterrupt:
|
|
|
+ logger.info('KeyboardInterrupt received. Cleaning up...')
|
|
|
+ cleanup()
|
|
|
+ output_fp.close()
|
|
|
+ total_correct = 0
|
|
|
+ output = []
|
|
|
+ with open(output_file, 'r') as f:
|
|
|
+ for line in f:
|
|
|
+ data = json.loads(line)
|
|
|
+ output.append(data)
|
|
|
+ if data['qid'] in finished_task_ids:
|
|
|
+ if str(data['correct']).lower() == 'true':
|
|
|
+ total_correct += 1
|
|
|
+ # sort all output by question_id
|
|
|
+ output = sorted(output, key=lambda x: x['qid'])
|
|
|
+ with open(output_file, 'w') as f:
|
|
|
+ for dat in output:
|
|
|
+ f.write(json.dumps(dat) + '\n')
|
|
|
+ f.flush()
|
|
|
+ logger.info(
|
|
|
+ f'Evaluation finished for {dataset}-{hardness}. Total: {len(toolqa_test)+finished_task_number}; Correct: {total_correct}; Accuracy: {total_correct / (len(toolqa_test)+finished_task_number)}'
|
|
|
+ )
|