|
|
@@ -0,0 +1,292 @@
|
|
|
+import asyncio
|
|
|
+import os
|
|
|
+from typing import Any
|
|
|
+
|
|
|
+import pandas as pd
|
|
|
+from datasets import load_dataset
|
|
|
+from tqdm import tqdm
|
|
|
+
|
|
|
+from evaluation.utils.shared import (
|
|
|
+ EvalMetadata,
|
|
|
+ EvalOutput,
|
|
|
+ codeact_user_response,
|
|
|
+ make_metadata,
|
|
|
+ prepare_dataset,
|
|
|
+ reset_logger_for_multiprocessing,
|
|
|
+ run_evaluation,
|
|
|
+)
|
|
|
+from openhands.controller.state.state import State
|
|
|
+from openhands.core.config import (
|
|
|
+ AppConfig,
|
|
|
+ SandboxConfig,
|
|
|
+ get_llm_config_arg,
|
|
|
+ get_parser,
|
|
|
+)
|
|
|
+from openhands.core.logger import openhands_logger as logger
|
|
|
+from openhands.core.main import create_runtime, run_controller
|
|
|
+from openhands.events.action import CmdRunAction, MessageAction
|
|
|
+from openhands.events.observation import CmdOutputObservation
|
|
|
+from openhands.runtime.base import Runtime
|
|
|
+from openhands.utils.async_utils import call_async_from_sync
|
|
|
+
|
|
|
+AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
|
|
|
+ 'CodeActAgent': codeact_user_response,
|
|
|
+}
|
|
|
+
|
|
|
+LOCAL_DATASET_PATH = os.path.join(os.path.dirname(__file__), 'benchmark')
|
|
|
+
|
|
|
+
|
|
|
+def format_task_dict(example, use_knowledge):
|
|
|
+ task = {
|
|
|
+ 'instance_id': example['instance_id'],
|
|
|
+ 'task_inst': example['task_inst'],
|
|
|
+ 'dataset_path': '/benchmark/datasets/'
|
|
|
+ + example['dataset_folder_tree'].split('\n')[0][4:],
|
|
|
+ 'dataset_folder_tree': example['dataset_folder_tree'],
|
|
|
+ 'dataset_preview': example['dataset_preview'],
|
|
|
+ 'pred_program_name': 'pred_' + example['gold_program_name'],
|
|
|
+ }
|
|
|
+
|
|
|
+ if use_knowledge:
|
|
|
+ task['task_inst'] += '\n' + str(example['domain_knowledge'])
|
|
|
+
|
|
|
+ return task
|
|
|
+
|
|
|
+
|
|
|
+def get_config(
|
|
|
+ metadata: EvalMetadata,
|
|
|
+ instance_id: str,
|
|
|
+) -> AppConfig:
|
|
|
+ config = AppConfig(
|
|
|
+ default_agent=metadata.agent_class,
|
|
|
+ run_as_openhands=False,
|
|
|
+ runtime=os.environ.get('RUNTIME', 'eventstream'),
|
|
|
+ max_budget_per_task=4,
|
|
|
+ max_iterations=metadata.max_iterations,
|
|
|
+ sandbox=SandboxConfig(
|
|
|
+ base_container_image='docker.io/xingyaoww/openhands-eval-scienceagentbench',
|
|
|
+ enable_auto_lint=True,
|
|
|
+ use_host_network=False,
|
|
|
+ timeout=300,
|
|
|
+ api_key=os.environ.get('ALLHANDS_API_KEY', None),
|
|
|
+ remote_runtime_api_url=os.environ.get('SANDBOX_REMOTE_RUNTIME_API_URL'),
|
|
|
+ keep_remote_runtime_alive=False,
|
|
|
+ ),
|
|
|
+ # do not mount workspace
|
|
|
+ workspace_base=None,
|
|
|
+ workspace_mount_path=None,
|
|
|
+ )
|
|
|
+ config.set_llm_config(metadata.llm_config)
|
|
|
+ if metadata.llm_config.log_completions:
|
|
|
+ metadata.llm_config.log_completions_folder = os.path.join(
|
|
|
+ metadata.eval_output_dir, 'llm_completions', instance_id
|
|
|
+ )
|
|
|
+ logger.info(
|
|
|
+ f'Logging LLM completions for instance {instance_id} to '
|
|
|
+ f'{metadata.llm_config.log_completions_folder}'
|
|
|
+ )
|
|
|
+ return config
|
|
|
+
|
|
|
+
|
|
|
+def initialize_runtime(
|
|
|
+ runtime: Runtime,
|
|
|
+ instance: pd.Series, # this argument is not required
|
|
|
+):
|
|
|
+ """Initialize the runtime for the agent.
|
|
|
+
|
|
|
+ This function is called before the runtime is used to run the agent.
|
|
|
+ """
|
|
|
+ logger.info(f"{'-' * 50} BEGIN Runtime Initialization Fn {'-' * 50}")
|
|
|
+ obs: CmdOutputObservation
|
|
|
+
|
|
|
+ # Set up workspace directories
|
|
|
+ action = CmdRunAction(command='mkdir -p /workspace/pred_programs')
|
|
|
+ logger.info(action, extra={'msg_type': 'ACTION'})
|
|
|
+ obs = runtime.run_action(action)
|
|
|
+ assert obs.exit_code == 0
|
|
|
+
|
|
|
+ action = CmdRunAction(command='mkdir -p /workspace/pred_results')
|
|
|
+ logger.info(action, extra={'msg_type': 'ACTION'})
|
|
|
+ obs = runtime.run_action(action)
|
|
|
+ assert obs.exit_code == 0
|
|
|
+
|
|
|
+ dataset_name = instance['dataset_folder_tree'].split('\n')[0][4:].rstrip('/')
|
|
|
+
|
|
|
+ # Copy the dataset to the workspace
|
|
|
+ dataset_dir = os.path.join(
|
|
|
+ LOCAL_DATASET_PATH,
|
|
|
+ 'datasets',
|
|
|
+ dataset_name,
|
|
|
+ )
|
|
|
+ runtime.copy_to(dataset_dir, '/workspace/benchmark/datasets', recursive=True)
|
|
|
+
|
|
|
+ # Check the dataset exists
|
|
|
+ action = CmdRunAction(
|
|
|
+ command='cd /workspace/benchmark/datasets && ls',
|
|
|
+ keep_prompt=False,
|
|
|
+ )
|
|
|
+ obs = runtime.run_action(action)
|
|
|
+ logger.info(obs, extra={'msg_type': 'OBSERVATION'})
|
|
|
+ assert obs.exit_code == 0
|
|
|
+ assert dataset_name in obs.content
|
|
|
+
|
|
|
+ logger.info(f"{'-' * 50} END Runtime Initialization Fn {'-' * 50}")
|
|
|
+
|
|
|
+
|
|
|
+def complete_runtime(
|
|
|
+ runtime: Runtime,
|
|
|
+ instance: pd.Series,
|
|
|
+) -> dict[str, Any]:
|
|
|
+ """Complete the runtime for the agent.
|
|
|
+
|
|
|
+ This function is called before the runtime is used to run the agent.
|
|
|
+ If you need to do something in the sandbox to get the correctness metric after
|
|
|
+ the agent has run, modify this function.
|
|
|
+ """
|
|
|
+ logger.info(f"{'-' * 50} BEGIN Runtime Completion Fn {'-' * 50}")
|
|
|
+ obs: CmdOutputObservation
|
|
|
+
|
|
|
+ test_result = {}
|
|
|
+
|
|
|
+ action = CmdRunAction(command='cd /workspace')
|
|
|
+ logger.info(action, extra={'msg_type': 'ACTION'})
|
|
|
+ obs = runtime.run_action(action)
|
|
|
+
|
|
|
+ assert obs.exit_code == 0
|
|
|
+
|
|
|
+ action = CmdRunAction(
|
|
|
+ command=f'cat pred_programs/{instance.pred_program_name}',
|
|
|
+ keep_prompt=False,
|
|
|
+ )
|
|
|
+ logger.info(action, extra={'msg_type': 'ACTION'})
|
|
|
+ obs = runtime.run_action(action)
|
|
|
+
|
|
|
+ if obs.exit_code == 0:
|
|
|
+ test_result = {'program': obs.content}
|
|
|
+ else:
|
|
|
+ test_result = {'program': 'ERROR'}
|
|
|
+
|
|
|
+ logger.info(f"{'-' * 50} END Runtime Completion Fn {'-' * 50}")
|
|
|
+ return test_result
|
|
|
+
|
|
|
+
|
|
|
+def process_instance(
|
|
|
+ instance: pd.Series,
|
|
|
+ metadata: EvalMetadata,
|
|
|
+ reset_logger: bool = True,
|
|
|
+) -> EvalOutput:
|
|
|
+ instance_id = instance.instance_id.replace('/', '__')
|
|
|
+ config = get_config(metadata, instance_id)
|
|
|
+
|
|
|
+ # Set up the logger properly, so you can run multi-processing to parallelize the evaluation
|
|
|
+ if reset_logger:
|
|
|
+ log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
|
|
|
+ reset_logger_for_multiprocessing(logger, instance_id, log_dir)
|
|
|
+ else:
|
|
|
+ logger.info(f'Starting evaluation for instance {instance_id}.')
|
|
|
+
|
|
|
+ instruction = f"""You are an expert Python programming assistant that helps scientist users to write high-quality code to solve their tasks.
|
|
|
+Given a user request, you are expected to write a complete program that accomplishes the requested task and save any outputs to `/workspace/pred_results/` in the correct format.
|
|
|
+
|
|
|
+Here's the user request you need to work on:
|
|
|
+{instance.task_inst}
|
|
|
+
|
|
|
+You can access the dataset at `{instance.dataset_path}`. Here is the directory structure of the dataset:
|
|
|
+```
|
|
|
+{instance.dataset_folder_tree}
|
|
|
+```
|
|
|
+Here are some helpful previews for the dataset file(s):
|
|
|
+{instance.dataset_preview}
|
|
|
+
|
|
|
+Please save your program as `/workspace/pred_programs/{instance.pred_program_name}`.
|
|
|
+Then, please run the program to check and fix any errors.
|
|
|
+Please do NOT run the program in the background.
|
|
|
+If the program uses some packages that are incompatible, please figure out alternative implementations and do NOT restart the environment.
|
|
|
+
|
|
|
+"""
|
|
|
+
|
|
|
+ runtime = create_runtime(config)
|
|
|
+ call_async_from_sync(runtime.connect)
|
|
|
+ initialize_runtime(runtime, instance)
|
|
|
+
|
|
|
+ # Here's how you can run the agent (similar to the `main` function) and get the final task state
|
|
|
+ state: State | None = asyncio.run(
|
|
|
+ run_controller(
|
|
|
+ config=config,
|
|
|
+ initial_user_action=MessageAction(content=instruction),
|
|
|
+ runtime=runtime,
|
|
|
+ fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN.get(
|
|
|
+ metadata.agent_class
|
|
|
+ ),
|
|
|
+ )
|
|
|
+ )
|
|
|
+
|
|
|
+ # ======= Attempt to evaluate the agent's edits =======
|
|
|
+ test_result = complete_runtime(runtime, instance)
|
|
|
+
|
|
|
+ # If you are working on some simpler benchmark that only evaluates the final model output (e.g., in a MessageAction)
|
|
|
+ # You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation.
|
|
|
+ if state is None:
|
|
|
+ raise ValueError('State should not be None.')
|
|
|
+ metrics = state.metrics.get() if state.metrics else None
|
|
|
+
|
|
|
+ # history is now available as a stream of events, rather than list of pairs of (Action, Observation)
|
|
|
+ # for compatibility with the existing output format, we can remake the pairs here
|
|
|
+ # remove when it becomes unnecessary
|
|
|
+ histories = state.history.compatibility_for_eval_history_pairs()
|
|
|
+
|
|
|
+ # Save the output
|
|
|
+ output = EvalOutput(
|
|
|
+ instance_id=instance.instance_id,
|
|
|
+ instruction=instruction,
|
|
|
+ metadata=metadata,
|
|
|
+ history=histories,
|
|
|
+ metrics=metrics,
|
|
|
+ error=state.last_error if state and state.last_error else None,
|
|
|
+ test_result=test_result,
|
|
|
+ )
|
|
|
+ return output
|
|
|
+
|
|
|
+
|
|
|
+if __name__ == '__main__':
|
|
|
+ parser = get_parser()
|
|
|
+ parser.add_argument(
|
|
|
+ '--use_knowledge',
|
|
|
+ type=str,
|
|
|
+ default='false',
|
|
|
+ choices=['true', 'false'],
|
|
|
+ help='use expert-provided knowledge or not',
|
|
|
+ )
|
|
|
+ args, _ = parser.parse_known_args()
|
|
|
+
|
|
|
+ sab_dataset = load_dataset('osunlp/ScienceAgentBench', split='validation')
|
|
|
+
|
|
|
+ dataset_processed = []
|
|
|
+ for example in tqdm(sab_dataset):
|
|
|
+ dataset_processed.append(
|
|
|
+ format_task_dict(example, args.use_knowledge == 'true')
|
|
|
+ )
|
|
|
+
|
|
|
+ dataset = pd.DataFrame(dataset_processed)
|
|
|
+
|
|
|
+ llm_config = None
|
|
|
+ if args.llm_config:
|
|
|
+ llm_config = get_llm_config_arg(args.llm_config)
|
|
|
+ if llm_config is None:
|
|
|
+ raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
|
|
|
+
|
|
|
+ metadata = make_metadata(
|
|
|
+ llm_config,
|
|
|
+ 'ScienceAgentBench',
|
|
|
+ args.agent_cls,
|
|
|
+ args.max_iterations,
|
|
|
+ args.eval_note,
|
|
|
+ args.eval_output_dir,
|
|
|
+ )
|
|
|
+ output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
|
|
|
+ dataset['instance_id'] = dataset['instance_id'].apply(str)
|
|
|
+ instances = prepare_dataset(dataset, output_file, args.eval_n_limit)
|
|
|
+
|
|
|
+ run_evaluation(
|
|
|
+ instances, metadata, output_file, args.eval_num_workers, process_instance
|
|
|
+ )
|