import os import tempfile import time import pandas as pd from swebench.harness.grading import get_eval_report from swebench.harness.run_evaluation import ( APPLY_PATCH_FAIL, APPLY_PATCH_PASS, ) from swebench.harness.test_spec import SWEbenchInstance, TestSpec, make_test_spec from swebench.harness.utils import load_swebench_dataset from evaluation.swe_bench.run_infer import get_instance_docker_image from evaluation.utils.shared import ( EvalMetadata, EvalOutput, prepare_dataset, reset_logger_for_multiprocessing, run_evaluation, ) from openhands.core.config import ( AppConfig, SandboxConfig, get_parser, ) from openhands.core.logger import openhands_logger as logger from openhands.core.main import create_runtime from openhands.events.action import CmdRunAction from openhands.events.observation import CmdOutputObservation from openhands.utils.async_utils import call_async_from_sync # TODO: migrate all swe-bench docker to ghcr.io/openhands DOCKER_IMAGE_PREFIX = os.environ.get('EVAL_DOCKER_IMAGE_PREFIX', 'docker.io/xingyaoww/') logger.info(f'Using docker image prefix: {DOCKER_IMAGE_PREFIX}') def process_git_patch(patch): if not isinstance(patch, str): return '' if not patch.strip(): # skip empty patches return '' patch = patch.replace('\r\n', '\n') # There might be some weird characters at the beginning of the patch # due to some OpenHands inference command outputs # FOR EXAMPLE: # git diff --no-color --cached 895f28f9cbed817c00ab68770433170d83132d90 # 0 # diff --git a/django/db/models/sql/.backup.query.py b/django/db/models/sql/.backup.query.py # new file mode 100644 # index 0000000000..fc13db5948 # We "find" the first line that starts with "diff" and then we remove lines before it lines = patch.split('\n') for i, line in enumerate(lines): if line.startswith('diff --git'): patch = '\n'.join(lines[i:]) break patch = patch.rstrip() + '\n' # Make sure the last line ends with a newline return patch def get_config(instance: pd.Series) -> AppConfig: # We use a different instance image for the each instance of swe-bench eval base_container_image = get_instance_docker_image(instance['instance_id']) logger.info( f'Using instance container image: {base_container_image}. ' f'Please make sure this image exists. ' f'Submit an issue on https://github.com/All-Hands-AI/OpenHands if you run into any issues.' ) config = AppConfig( run_as_openhands=False, runtime=os.environ.get('RUNTIME', 'eventstream'), sandbox=SandboxConfig( base_container_image=base_container_image, use_host_network=False, # large enough timeout, since some testcases take very long to run timeout=1800, api_key=os.environ.get('ALLHANDS_API_KEY', None), remote_runtime_api_url=os.environ.get('SANDBOX_REMOTE_RUNTIME_API_URL'), ), # do not mount workspace workspace_base=None, workspace_mount_path=None, ) return config def process_instance( instance: pd.Series, metadata: EvalMetadata | None = None, reset_logger: bool = True, ) -> EvalOutput: # Setup the logger properly, so you can run multi-processing to parallelize the evaluation if reset_logger: global output_file log_dir = output_file.replace('.jsonl', '.logs') os.makedirs(log_dir, exist_ok=True) reset_logger_for_multiprocessing(logger, instance.instance_id, log_dir) else: logger.info(f'Starting evaluation for instance {instance.instance_id}.') config = get_config(instance) instance_id = instance.instance_id model_patch = instance['model_patch'] test_spec: TestSpec = instance['test_spec'] logger.info(f'Starting evaluation for instance {instance_id}.') if 'test_result' not in instance.keys(): instance['test_result'] = {} instance['test_result']['report'] = { 'empty_generation': False, 'resolved': False, 'failed_apply_patch': False, 'error_eval': False, 'test_timeout': False, } if model_patch == '': instance['test_result']['report']['empty_generation'] = True return EvalOutput( instance_id=instance_id, test_result=instance['test_result'], ) runtime = create_runtime(config) call_async_from_sync(runtime.connect) # Get patch and save it to /tmp/patch.diff with tempfile.TemporaryDirectory() as temp_dir: # Patch file patch_file_path = os.path.join(temp_dir, 'patch.diff') with open(patch_file_path, 'w') as f: f.write(model_patch) runtime.copy_to(patch_file_path, '/tmp') # Eval script eval_script_path = os.path.join(temp_dir, 'eval.sh') with open(eval_script_path, 'w') as f: f.write(test_spec.eval_script) runtime.copy_to(eval_script_path, '/tmp') # Set +x action = CmdRunAction(command='chmod +x /tmp/eval.sh') action.timeout = 600 logger.info(action, extra={'msg_type': 'ACTION'}) obs = runtime.run_action(action) logger.info(obs, extra={'msg_type': 'OBSERVATION'}) assert obs.exit_code == 0 # Apply patch exec_command = ( 'cd /testbed && ' "(git apply -v /tmp/patch.diff && echo 'APPLY_PATCH_PASS' || " "(echo 'Failed to apply patch with git apply, trying with patch command...' && " "(patch --batch --fuzz=5 -p1 -i /tmp/patch.diff && echo 'APPLY_PATCH_PASS' || " "echo 'APPLY_PATCH_FAIL')))" ) action = CmdRunAction(command=exec_command, keep_prompt=False) action.timeout = 600 obs = runtime.run_action(action) assert isinstance(obs, CmdOutputObservation) apply_patch_output = obs.content assert isinstance(apply_patch_output, str) instance['test_result']['apply_patch_output'] = apply_patch_output try: if 'APPLY_PATCH_FAIL' in apply_patch_output: logger.info(f'[{instance_id}] {APPLY_PATCH_FAIL}:\n{apply_patch_output}') instance['test_result']['report']['failed_apply_patch'] = True return EvalOutput( instance_id=instance_id, test_result=instance['test_result'], ) elif 'APPLY_PATCH_PASS' in apply_patch_output: logger.info(f'[{instance_id}] {APPLY_PATCH_PASS}:\n{apply_patch_output}') # Run eval script in background and save output to log file log_file = '/tmp/eval_output.log' action = CmdRunAction( command=f'/tmp/eval.sh > {log_file} 2>&1 & echo $!', keep_prompt=False ) action.timeout = 60 # Short timeout just to get the process ID obs = runtime.run_action(action) if isinstance(obs, CmdOutputObservation) and obs.exit_code == 0: pid = obs.content.split()[-1].strip() logger.info( f'[{instance_id}] Evaluation process started with PID: {pid}' ) # Poll for completion start_time = time.time() timeout = 1800 # 30 minutes while True: seconds_elapsed = time.time() - start_time if seconds_elapsed > timeout: logger.info( f'[{instance_id}] Evaluation timed out after {timeout} seconds' ) instance['test_result']['report']['test_timeout'] = True break check_action = CmdRunAction( command=f'ps -p {pid} > /dev/null; echo $?', keep_prompt=False ) check_action.timeout = 60 check_obs = runtime.run_action(check_action) if ( isinstance(check_obs, CmdOutputObservation) and check_obs.content.split()[-1].strip() == '1' ): logger.info( f'[{instance_id}] Evaluation process completed after {seconds_elapsed} seconds' ) break logger.info( f'[{instance_id}] [{seconds_elapsed:.0f}s] Evaluation still running, waiting...' ) time.sleep(30) # Wait for 30 seconds before checking again # Read the log file cat_action = CmdRunAction(command=f'cat {log_file}', keep_prompt=False) cat_action.timeout = 300 cat_obs = runtime.run_action(cat_action) # Grade answer if isinstance(cat_obs, CmdOutputObservation) and cat_obs.exit_code == 0: test_output = cat_obs.content assert isinstance(test_output, str) instance['test_result']['test_output'] = test_output # Get report from test output logger.info(f'[{instance_id}] Grading answer...') with tempfile.TemporaryDirectory() as temp_dir: # Create a directory structure that matches the expected format # NOTE: this is a hack to make the eval report format consistent # with the original SWE-Bench eval script log_dir = os.path.join(temp_dir, 'logs', instance_id.lower()) os.makedirs(log_dir, exist_ok=True) test_output_path = os.path.join(log_dir, 'test_output.txt') with open(test_output_path, 'w') as f: f.write(test_output) _report = get_eval_report( test_spec=test_spec, prediction={ 'model_patch': model_patch, 'instance_id': instance_id, }, log_path=test_output_path, include_tests_status=True, ) report = _report[instance_id] logger.info( f"[{instance_id}] report: {report}\nResult for {instance_id}: resolved: {report['resolved']}" ) instance['test_result']['report']['resolved'] = report[ 'resolved' ] else: logger.info(f'[{instance_id}] Error when starting eval:\n{obs.content}') instance['test_result']['report']['error_eval'] = True return EvalOutput( instance_id=instance_id, test_result=instance['test_result'], ) else: logger.info( f'[{instance_id}] Unexpected output when applying patch:\n{apply_patch_output}' ) raise RuntimeError( instance_id, f'Unexpected output when applying patch:\n{apply_patch_output}', logger, ) finally: runtime.close() if __name__ == '__main__': parser = get_parser() parser.add_argument( '--input-file', type=str, help='Path to input predictions file', required=True, ) parser.add_argument( '--dataset', type=str, default='princeton-nlp/SWE-bench', help='data set to evaluate on, either full-test or lite-test', ) parser.add_argument( '--split', type=str, default='test', help='split to evaluate on', ) args, _ = parser.parse_known_args() # Load SWE-Bench dataset full_dataset: list[SWEbenchInstance] = load_swebench_dataset( args.dataset, args.split ) instance_id_to_instance = { instance['instance_id']: instance for instance in full_dataset } logger.info( f'Loaded dataset {args.dataset} with split {args.split} to run inference on.' ) # Load predictions assert args.input_file.endswith('.jsonl'), 'Input file must be a jsonl file.' predictions = pd.read_json(args.input_file, lines=True) assert ( 'instance_id' in predictions.columns ), 'Input file must contain instance_id column.' if 'model_patch' not in predictions.columns and ( 'test_result' in predictions.columns and 'model_patch' in predictions['test_result'].iloc[0] ): raise ValueError( 'Input file must contain model_patch column OR test_result column with model_patch field.' ) assert len(predictions['instance_id'].unique()) == len( predictions ), 'instance_id column must be unique.' if 'model_patch' not in predictions.columns: predictions['model_patch'] = predictions['test_result'].apply( lambda x: x['git_patch'] ) assert {'instance_id', 'model_patch'}.issubset( set(predictions.columns) ), 'Input file must contain instance_id and model_patch columns.' # Process model_patch predictions['model_patch'] = predictions['model_patch'].apply(process_git_patch) # Merge predictions with dataset predictions['instance'] = predictions['instance_id'].apply( lambda x: instance_id_to_instance[x] ) predictions['test_spec'] = predictions['instance'].apply(make_test_spec) # Prepare dataset output_file = args.input_file.replace('.jsonl', '.swebench_eval.jsonl') instances = prepare_dataset(predictions, output_file, args.eval_n_limit) run_evaluation( instances, metadata=None, output_file=output_file, num_workers=args.eval_num_workers, process_instance_func=process_instance, ) # Load evaluated predictions & print number of resolved predictions evaluated_predictions = pd.read_json(output_file, lines=True) fields = ['resolved', 'failed_apply_patch', 'error_eval', 'empty_generation'] def count_report_field(row, field): return row['test_result']['report'][field] report = {} for field in fields: count = evaluated_predictions.apply( count_report_field, args=(field,), axis=1 ).sum() report[field] = count logger.info( f'# {field}: {count} / {len(evaluated_predictions)}. ({count / len(evaluated_predictions):.2%})' )