import os from agenthub.codeact_agent.action_parser import CodeActResponseParser from openhands.controller.agent import Agent from openhands.controller.state.state import State from openhands.core.config import AgentConfig from openhands.core.message import ImageContent, Message, TextContent from openhands.events.action import ( Action, AgentDelegateAction, AgentFinishAction, CmdRunAction, IPythonRunCellAction, MessageAction, ) from openhands.events.observation import ( AgentDelegateObservation, CmdOutputObservation, IPythonRunCellObservation, ) from openhands.events.observation.error import ErrorObservation from openhands.events.observation.observation import Observation from openhands.events.serialization.event import truncate_content from openhands.llm.llm import LLM from openhands.runtime.plugins import ( AgentSkillsRequirement, JupyterRequirement, PluginRequirement, ) from openhands.utils.prompt import PromptManager class CodeActAgent(Agent): VERSION = '1.9' """ The Code Act Agent is a minimalist agent. The agent works by passing the model a list of action-observation pairs and prompting the model to take the next step. ### Overview This agent implements the CodeAct idea ([paper](https://arxiv.org/abs/2402.01030), [tweet](https://twitter.com/xingyaow_/status/1754556835703751087)) that consolidates LLM agents’ **act**ions into a unified **code** action space for both *simplicity* and *performance* (see paper for more details). The conceptual idea is illustrated below. At each turn, the agent can: 1. **Converse**: Communicate with humans in natural language to ask for clarification, confirmation, etc. 2. **CodeAct**: Choose to perform the task by executing code - Execute any valid Linux `bash` command - Execute any valid `Python` code with [an interactive Python interpreter](https://ipython.org/). This is simulated through `bash` command, see plugin system below for more details. ![image](https://github.com/All-Hands-AI/OpenHands/assets/38853559/92b622e3-72ad-4a61-8f41-8c040b6d5fb3) """ sandbox_plugins: list[PluginRequirement] = [ # NOTE: AgentSkillsRequirement need to go before JupyterRequirement, since # AgentSkillsRequirement provides a lot of Python functions, # and it needs to be initialized before Jupyter for Jupyter to use those functions. AgentSkillsRequirement(), JupyterRequirement(), ] action_parser = CodeActResponseParser() def __init__( self, llm: LLM, config: AgentConfig, ) -> None: """Initializes a new instance of the CodeActAgent class. Parameters: - llm (LLM): The llm to be used by this agent """ super().__init__(llm, config) self.reset() self.prompt_manager = PromptManager( prompt_dir=os.path.join(os.path.dirname(__file__)), agent_skills_docs=AgentSkillsRequirement.documentation, micro_agent_name=None, # TODO: implement micro-agent ) def action_to_str(self, action: Action) -> str: if isinstance(action, CmdRunAction): return ( f'{action.thought}\n\n{action.command}\n' ) elif isinstance(action, IPythonRunCellAction): return f'{action.thought}\n\n{action.code}\n' elif isinstance(action, AgentDelegateAction): return f'{action.thought}\n\n{action.inputs["task"]}\n' elif isinstance(action, MessageAction): return action.content elif isinstance(action, AgentFinishAction) and action.source == 'agent': return action.thought return '' def get_action_message(self, action: Action) -> Message | None: if ( isinstance(action, AgentDelegateAction) or isinstance(action, CmdRunAction) or isinstance(action, IPythonRunCellAction) or isinstance(action, MessageAction) or (isinstance(action, AgentFinishAction) and action.source == 'agent') ): content = [TextContent(text=self.action_to_str(action))] if isinstance(action, MessageAction) and action.images_urls: content.append(ImageContent(image_urls=action.images_urls)) return Message( role='user' if action.source == 'user' else 'assistant', content=content ) return None def get_observation_message(self, obs: Observation) -> Message | None: max_message_chars = self.llm.config.max_message_chars if isinstance(obs, CmdOutputObservation): text = 'OBSERVATION:\n' + truncate_content(obs.content, max_message_chars) text += ( f'\n[Command {obs.command_id} finished with exit code {obs.exit_code}]' ) return Message(role='user', content=[TextContent(text=text)]) elif isinstance(obs, IPythonRunCellObservation): text = 'OBSERVATION:\n' + obs.content # replace base64 images with a placeholder splitted = text.split('\n') for i, line in enumerate(splitted): if '![image](data:image/png;base64,' in line: splitted[i] = ( '![image](data:image/png;base64, ...) already displayed to user' ) text = '\n'.join(splitted) text = truncate_content(text, max_message_chars) return Message(role='user', content=[TextContent(text=text)]) elif isinstance(obs, AgentDelegateObservation): text = 'OBSERVATION:\n' + truncate_content( str(obs.outputs), max_message_chars ) return Message(role='user', content=[TextContent(text=text)]) elif isinstance(obs, ErrorObservation): text = 'OBSERVATION:\n' + truncate_content(obs.content, max_message_chars) text += '\n[Error occurred in processing last action]' return Message(role='user', content=[TextContent(text=text)]) else: # If an observation message is not returned, it will cause an error # when the LLM tries to return the next message raise ValueError(f'Unknown observation type: {type(obs)}') def reset(self) -> None: """Resets the CodeAct Agent.""" super().reset() def step(self, state: State) -> Action: """Performs one step using the CodeAct Agent. This includes gathering info on previous steps and prompting the model to make a command to execute. Parameters: - state (State): used to get updated info Returns: - CmdRunAction(command) - bash command to run - IPythonRunCellAction(code) - IPython code to run - AgentDelegateAction(agent, inputs) - delegate action for (sub)task - MessageAction(content) - Message action to run (e.g. ask for clarification) - AgentFinishAction() - end the interaction """ # if we're done, go back latest_user_message = state.history.get_last_user_message() if latest_user_message and latest_user_message.strip() == '/exit': return AgentFinishAction() # prepare what we want to send to the LLM messages = self._get_messages(state) response = self.llm.completion( messages=[message.model_dump() for message in messages], stop=[ '', '', '', ], temperature=0.0, ) return self.action_parser.parse(response) def _get_messages(self, state: State) -> list[Message]: messages: list[Message] = [ Message( role='system', content=[TextContent(text=self.prompt_manager.system_message)], ), Message( role='user', content=[TextContent(text=self.prompt_manager.initial_user_message)], ), ] for event in state.history.get_events(): # create a regular message from an event if isinstance(event, Action): message = self.get_action_message(event) elif isinstance(event, Observation): message = self.get_observation_message(event) else: raise ValueError(f'Unknown event type: {type(event)}') # add regular message if message: # handle error if the message is the SAME role as the previous message # litellm.exceptions.BadRequestError: litellm.BadRequestError: OpenAIException - Error code: 400 - {'detail': 'Only supports u/a/u/a/u...'} # there should not have two consecutive messages from the same role if messages and messages[-1].role == message.role: messages[-1].content.extend(message.content) else: messages.append(message) # the latest user message is important: # we want to remind the agent of the environment constraints latest_user_message = next( ( m for m in reversed(messages) if m.role == 'user' and any(isinstance(c, TextContent) for c in m.content) ), None, ) # Get the last user text inside content if latest_user_message: latest_user_message_text = next( ( t for t in reversed(latest_user_message.content) if isinstance(t, TextContent) ) ) # add a reminder to the prompt reminder_text = f'\n\nENVIRONMENT REMINDER: You have {state.max_iterations - state.iteration} turns left to complete the task. When finished reply with .' if latest_user_message_text: latest_user_message_text.text = ( latest_user_message_text.text + reminder_text ) else: latest_user_message_text = TextContent(text=reminder_text) latest_user_message.content.append(latest_user_message_text) return messages