""" Implements evaluation of agents on HumanEvalFix from the HumanEvalPack benchmark introduced in "OctoPack: Instruction Tuning Code Large Language Models" (https://arxiv.org/abs/2308.07124). Please see https://github.com/bigcode-project/bigcode-evaluation-harness/blob/main/bigcode_eval/tasks/humanevalpack.py for the reference implementation used in the paper. TODOs: - Potentially support other HumanEvalPack datasets (Explain & Synthesize) - Support other languages (currently only Python) """ import asyncio import json import logging import multiprocessing as mp import os import pathlib import subprocess import time from concurrent.futures import ProcessPoolExecutor import pandas as pd from datasets import load_dataset from evaluate import load from tqdm import tqdm from opendevin.controller.state.state import State from opendevin.core.config import args, config, get_llm_config_arg from opendevin.core.logger import get_console_handler from opendevin.core.logger import opendevin_logger as logger from opendevin.core.main import main from opendevin.events.action import MessageAction from opendevin.events.serialization.event import event_to_dict IMPORT_HELPER = { 'python': [ 'import math', 'import re', 'import sys', 'import copy', 'import datetime', 'import itertools', 'import collections', 'import heapq', 'import statistics', 'import functools', 'import hashlib', 'import numpy', 'import numpy as np', 'import string', 'from typing import *', 'from collections import *', ], } LANGUAGE_TO_TIMEOUT = { 'python': 10, } LANGUAGE_TO_NUM_WORKERS = { 'python': 4, } def cleanup(): logger.info('Cleaning up child processes...') for process in mp.active_children(): logger.info(f'Terminating child process: {process.name}') process.terminate() process.join() def codeact_user_response(state: State) -> str: msg = ( 'Please continue working on the task on whatever approach you think is suitable.\n' 'If you think you have modified the code in a way that fixes the issue, please run the following command: exit .\n' 'IMPORTANT: YOU SHOULD NEVER ASK FOR HUMAN HELP OR USE THE INTERNET TO SOLVE THIS TASK.\n' ) if state.history: user_msgs = [ action for action, _ in state.history if isinstance(action, MessageAction) and action.source == 'user' ] if len(user_msgs) >= 2: # let the agent know that it can give up when it has tried 3 times return ( msg + 'If you want to give up, run: exit .\n' ) return msg def monologue_user_response(state: State) -> str: raise NotImplementedError('MonologueAgent should never ask for user responses.') AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = { 'CodeActAgent': codeact_user_response, 'MonologueAgent': monologue_user_response, } AGENT_CLS_TO_INST_SUFFIX = { 'CodeActAgent': 'When you think you have fixed the issue through code changes, please run the following command: exit .\n' } def get_test_result(instance, path, language='python', timeout=10): # Evaluation reference: https://github.com/bigcode-project/bigcode-evaluation-harness/blob/84b96da31b7f840b55c5733325346176140cdb6b/bigcode_eval/tasks/humanevalpack.py#L347 test_result = {'result': {}, 'metadata': {}} code_metric = load('Muennighoff/code_eval_octopack') timeout = LANGUAGE_TO_TIMEOUT[language] num_workers = LANGUAGE_TO_NUM_WORKERS[language] python_imports = '\n'.join(IMPORT_HELPER[language]) # Load function from path with open(path, 'r') as f: function = f.read() function = [[python_imports + '\n' + function.strip()]] results, logs = code_metric.compute( references=[instance.test], predictions=function, language=language, timeout=timeout, num_workers=num_workers, ) test_result['result'] = results test_result['metadata'] = { 'logs': logs, 'timeout': timeout, 'num_workers': num_workers, } return test_result def process_instance( instance, agent_class, metadata, skip_workspace_mount, reset_logger: bool = True ): old_workspace_mount_path = config.workspace_mount_path old_workspace_base = config.workspace_base try: workspace_mount_path = os.path.join( config.workspace_mount_path, '_eval_workspace' ) # create process-specific workspace dir # if `not skip_workspace_mount` - we will create a workspace directory for EACH process # so that different agent don't interfere with each other. if not skip_workspace_mount: workspace_mount_path = os.path.join(workspace_mount_path, str(os.getpid())) pathlib.Path(workspace_mount_path).mkdir(parents=True, exist_ok=True) # reset workspace to config config.workspace_base = workspace_mount_path config.workspace_mount_path = workspace_mount_path # Setup the logger properly, so you can run multi-processing to parallelize the evaluation if reset_logger: # Set up logger log_file = os.path.join( eval_output_dir, 'logs', f'instance_{instance.task_id.replace("/", "__")}.log', ) # Remove all existing handlers from logger for handler in logger.handlers[:]: logger.removeHandler(handler) # add back the console handler to print ONE line logger.addHandler(get_console_handler()) logger.info( f'Starting evaluation for instance {instance.task_id}.\nLOG: tail -f {log_file}' ) # Remove all existing handlers from logger for handler in logger.handlers[:]: logger.removeHandler(handler) file_handler = logging.FileHandler(log_file) file_handler.setFormatter( logging.Formatter('%(asctime)s - %(levelname)s - %(message)s') ) logger.addHandler(file_handler) if not skip_workspace_mount: logger.info(f'Process-specific workspace mounted at {workspace_mount_path}') # Create file with HumanEvalFix problem # Prompt reference: https://github.com/bigcode-project/bigcode-evaluation-harness/blob/84b96da31b7f840b55c5733325346176140cdb6b/bigcode_eval/tasks/humanevalpack.py#L509 problem_statement = ( instance.declaration + instance.buggy_solution + '\n' + instance.test ) path = os.path.join( workspace_mount_path, f'{instance.task_id.replace("/", "__")}.py' ) with open(path, 'w') as f: f.write(problem_statement) # Prepare instruction instruction = ( f'Please fix the function in {instance.task_id.replace("/", "__")}.py such that all test cases pass.\n' 'Environment has been set up for you to start working. You may assume all necessary tools are installed.\n\n' '# Problem Statement\n' f'{problem_statement}\n\n' ) instruction += ( 'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n' 'You should NOT modify any existing test case files. If needed, you can add new test cases in a NEW file to reproduce the issue.\n' 'You SHOULD INCLUDE PROPER INDENTATION in your edit commands.\n' ) # NOTE: You can actually set slightly different instruction for different agents instruction += AGENT_CLS_TO_INST_SUFFIX.get(agent_class, '') # Here's how you can run the agent (similar to the `main` function) and get the final task state state: State = asyncio.run( main( instruction, fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN.get( agent_class ), ) ) # ======= Attempt to evaluate the agent's edits ======= test_result = get_test_result(instance, path) # If you are working on some simpler benchmark that only evaluates the final model output (e.g., in a MessageAction) # You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation. if state is None: raise ValueError('State should not be None.') metrics = state.metrics.get() if state.metrics else None # Save the output output = { 'task_id': instance.task_id, 'instruction': instruction, 'metadata': metadata, 'history': [ (event_to_dict(action), event_to_dict(obs)) for action, obs in state.history ], 'metrics': metrics, 'error': state.error if state and state.error else None, 'test_result': test_result, } except Exception: logger.error('Process instance failed') raise finally: config.workspace_mount_path = old_workspace_mount_path config.workspace_base = old_workspace_base return output if __name__ == '__main__': # NOTE: It is preferable to load datasets from huggingface datasets and perform post-processing # so we don't need to manage file uploading to OpenDevin's repo dataset = load_dataset( 'bigcode/humanevalpack', 'python' ) # TODO: Support other languages hefix_tests = dataset['test'].to_pandas() # Check https://github.com/OpenDevin/OpenDevin/blob/main/evaluation/humanevalfix/README.md#configure-opendevin-and-your-llm # for details of how to set `llm_config` if args.llm_config: specified_llm_config = get_llm_config_arg(args.llm_config) if specified_llm_config: config.llm = specified_llm_config logger.info(f'Config for evaluation: {config}') # TEST METADATA agent_class = args.agent_cls assert ( agent_class in AGENT_CLS_TO_FAKE_USER_RESPONSE_FN ), f'Unsupported agent class: {agent_class}' model_name = config.llm.model.split('/')[-1] max_iterations = args.max_iterations eval_note = '' if args.eval_note is not None: eval_note += '_N_' + args.eval_note eval_output_dir = os.path.join( args.eval_output_dir, 'humanevalfix', agent_class, model_name + '_maxiter_' + str(max_iterations) + eval_note, ) pathlib.Path(eval_output_dir).mkdir(parents=True, exist_ok=True) pathlib.Path(os.path.join(eval_output_dir, 'logs')).mkdir( parents=True, exist_ok=True ) logger.info(f'Using evaluation output directory: {eval_output_dir}') metadata = { 'agent_class': agent_class, 'model_name': model_name, 'max_iterations': max_iterations, 'eval_output_dir': eval_output_dir, 'start_time': time.strftime('%Y-%m-%d %H:%M:%S'), # get the commit id of current repo for reproducibility 'git_commit': subprocess.check_output(['git', 'rev-parse', 'HEAD']) .decode('utf-8') .strip(), } logger.info(f'Metadata: {metadata}') with open(os.path.join(eval_output_dir, 'metadata.json'), 'w') as f: json.dump(metadata, f) # LIMIT EVALUATION eval_n_limit = args.eval_n_limit if eval_n_limit: hefix_tests = hefix_tests.head(eval_n_limit) logger.info(f'Limiting evaluation to first {eval_n_limit} instances.') # OUTPUT FILE output_file = os.path.join(eval_output_dir, 'output.jsonl') logger.info(f'Writing evaluation output to {output_file}') finished_instance_ids = set() if os.path.exists(output_file): with open(output_file, 'r') as f: for line in f: data = json.loads(line) finished_instance_ids.add(data['task_id']) logger.warning( f'Output file {output_file} already exists. Loaded {len(finished_instance_ids)} finished instances.' ) output_fp = open(output_file, 'a') logger.info( f'Evaluation started with Agent {agent_class}, model {model_name}, max iterations {max_iterations}.' ) # ============================================= # filter out finished instances new_hefix_tests = [] for idx, instance in hefix_tests.iterrows(): if instance.task_id in finished_instance_ids: logger.info( f'Skipping instance {instance.task_id} as it is already finished.' ) continue new_hefix_tests.append(instance) hefix_tests = pd.DataFrame(new_hefix_tests) logger.info( f'Finished instances: {len(finished_instance_ids)}, Remaining instances: {len(hefix_tests)}' ) # ============================================= pbar = tqdm(total=len(hefix_tests)) # This function tracks the progress AND write the output to a JSONL file def update_progress(future): pbar.update(1) output = future.result() pbar.set_description(f'Instance {output["task_id"]}') pbar.set_postfix_str(f'Test Result: {output["test_result"]["result"]}') logger.info( f'Finished evaluation for instance {output["task_id"]}: {output["test_result"]["result"]}' ) output_fp.write(json.dumps(output) + '\n') output_fp.flush() # This sets the multi-processing num_workers = args.eval_num_workers logger.info(f'Using {num_workers} workers for evaluation.') try: with ProcessPoolExecutor(num_workers) as executor: futures = [] # This is how we perform multi-processing for row_idx, instance in hefix_tests.iterrows(): future = executor.submit( process_instance, instance, agent_class, metadata, skip_workspace_mount=False, reset_logger=bool(num_workers > 1), ) future.add_done_callback(update_progress) futures.append(future) # Wait for all futures to complete for future in futures: future.result() except KeyboardInterrupt: print('KeyboardInterrupt received. Cleaning up...') cleanup() output_fp.close() logger.info('Evaluation finished.')