| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227 |
- import asyncio
- import os
- import pandas as pd
- from datasets import load_dataset
- from evaluation.EDA.game import Q20Game, Q20GameCelebrity
- from evaluation.utils.shared import (
- EvalMetadata,
- EvalOutput,
- make_metadata,
- prepare_dataset,
- reset_logger_for_multiprocessing,
- run_evaluation,
- )
- from openhands.controller.state.state import State
- from openhands.core.config import (
- AppConfig,
- SandboxConfig,
- get_llm_config_arg,
- get_parser,
- )
- from openhands.core.logger import openhands_logger as logger
- from openhands.core.main import create_runtime, run_controller
- game = None
- def codeact_user_response_eda(state: State) -> str:
- global game
- model_guess = ''
- # retrieve the latest model message from history
- if state.history:
- model_guess = state.history.get_last_agent_message()
- assert game is not None, 'Game is not initialized.'
- msg = game.generate_user_response(model_guess)
- game.curr_turn += 1
- logger.info(f'Model guess: {model_guess}')
- logger.info(f'Answer response: {msg}')
- if 'bingo!' in msg.lower():
- return '/exit'
- return msg
- AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
- 'CodeActAgent': codeact_user_response_eda,
- }
- AGENT_CLS_TO_INST_SUFFIX = {
- 'CodeActAgent': 'When you think you have solved the question, please first send your answer to user through message and then exit.\n'
- }
- def get_config(
- metadata: EvalMetadata,
- ) -> AppConfig:
- config = AppConfig(
- default_agent=metadata.agent_class,
- run_as_openhands=False,
- runtime='eventstream',
- max_iterations=metadata.max_iterations,
- sandbox=SandboxConfig(
- base_container_image='python:3.12-bookworm',
- enable_auto_lint=False,
- use_host_network=False,
- ),
- # do not mount workspace
- workspace_base=None,
- workspace_mount_path=None,
- )
- config.set_llm_config(metadata.llm_config)
- return config
- def process_instance(
- instance: pd.Series,
- metadata: EvalMetadata,
- reset_logger: bool = True,
- ) -> EvalOutput:
- config = get_config(metadata)
- instance_id = instance['text'].strip()
- # Setup the logger properly, so you can run multi-processing to parallelize the evaluation
- if reset_logger:
- log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
- reset_logger_for_multiprocessing(logger, instance_id, log_dir)
- else:
- logger.info(f'Starting evaluation for instance {instance_id}.')
- # Prepare instruction
- _game_class = {'eda-things': Q20Game, 'eda-celebs': Q20GameCelebrity}
- guesser_kargs = {
- 'max_new_tokens': 64,
- 'temperature': 0.8,
- 'repetition_penalty': 1.0,
- 'do_sample': True,
- } # no penalty
- # Use codeactagent as guesser_model
- global game
- assert metadata.dataset is not None
- assert metadata.details is not None
- game = _game_class[metadata.dataset](
- item=instance['text'].strip(),
- answerer_model=metadata.details['answerer_model'],
- guesser_model=None,
- num_turns=metadata.max_iterations,
- openai_api_key=metadata.details['openai_api_key'],
- guesser_kargs=guesser_kargs,
- )
- instruction = f'{game.first_user_utterance}'
- logger.info(f'Instruction: {instruction}')
- instruction += AGENT_CLS_TO_INST_SUFFIX[metadata.agent_class]
- # Here's how you can run the agent (similar to the `main` function) and get the final task state
- runtime = create_runtime(config, sid=instance['text'].strip())
- state: State | None = asyncio.run(
- run_controller(
- config=config,
- task_str=instruction,
- runtime=runtime,
- fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN[
- metadata.agent_class
- ],
- )
- )
- # ======= Attempt to evaluate the agent's edits =======
- # If you are working on simpler benchmark that only evaluates the final model output (e.g., in a MessageAction)
- # You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation.
- if state is None:
- raise ValueError('State should not be None.')
- final_message = state.history.get_last_agent_message()
- logger.info(f'Final message: {final_message} | Ground truth: {instance["text"]}')
- test_result = game.reward()
- metrics = state.metrics.get() if state.metrics else None
- # history is now available as a stream of events, rather than list of pairs of (Action, Observation)
- # for compatibility with the existing output format, we can remake the pairs here
- # remove when it becomes unnecessary
- histories = state.history.compatibility_for_eval_history_pairs()
- # Save the output
- output = EvalOutput(
- instance_id=instance_id,
- instance=instance.to_dict(),
- instruction=instruction,
- metadata=metadata,
- history=histories,
- metrics=metrics,
- error=state.last_error if state and state.last_error else None,
- test_result={
- 'success': test_result,
- 'final_message': final_message,
- 'ground_truth': instance['text'],
- },
- )
- return output
- if __name__ == '__main__':
- parser = get_parser()
- parser.add_argument(
- '--answerer_model', '-a', default='gpt-3.5-turbo', help='answerer model'
- )
- parser.add_argument(
- '--dataset',
- default='things',
- choices=['things', 'celebs'],
- type=str,
- help='dataset to be used',
- )
- parser.add_argument(
- '--OPENAI_API_KEY', type=str, required=True, help='Your OpenAI API key'
- )
- parser.add_argument(
- '--data-split',
- default='test',
- type=str,
- help='data split, eg, test',
- )
- args, _ = parser.parse_known_args()
- eda_dataset = load_dataset(
- 'yizheapple/entity-deduction-arena', name=args.dataset, split=args.data_split
- )
- eda_dataset.rename(columns={'text': 'instance_id'}, inplace=True)
- llm_config = None
- if args.llm_config:
- llm_config = get_llm_config_arg(args.llm_config)
- if llm_config is None:
- raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
- metadata = make_metadata(
- llm_config,
- f'eda-{args.dataset}',
- args.agent_cls,
- args.max_iterations,
- args.eval_note,
- args.eval_output_dir,
- data_split=args.data_split,
- details={
- 'answerer_model': str(args.answerer_model),
- 'openai_api_key': str(args.OPENAI_API_KEY),
- },
- )
- output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
- prepared_dataset = prepare_dataset(
- eda_dataset.to_pandas(), output_file, args.eval_n_limit
- )
- run_evaluation(
- prepared_dataset,
- metadata,
- output_file,
- args.eval_num_workers,
- process_instance,
- )
|