| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283 |
- import re
- from agenthub.codeact_agent.prompt import (
- COMMAND_DOCS,
- EXAMPLES,
- GITHUB_MESSAGE,
- SYSTEM_PREFIX,
- SYSTEM_SUFFIX,
- )
- from opendevin.controller.agent import Agent
- from opendevin.controller.state.state import State
- from opendevin.events.action import (
- Action,
- AgentFinishAction,
- BrowseInteractiveAction,
- CmdRunAction,
- IPythonRunCellAction,
- MessageAction,
- )
- from opendevin.events.observation import (
- BrowserOutputObservation,
- CmdOutputObservation,
- IPythonRunCellObservation,
- )
- from opendevin.llm.llm import LLM
- from opendevin.runtime.plugins import (
- AgentSkillsRequirement,
- JupyterRequirement,
- PluginRequirement,
- )
- from opendevin.runtime.tools import RuntimeTool
- ENABLE_GITHUB = True
- def parse_response(response) -> str:
- action = response.choices[0].message.content
- for lang in ['bash', 'ipython', 'browse']:
- if f'<execute_{lang}>' in action and f'</execute_{lang}>' not in action:
- action += f'</execute_{lang}>'
- return action
- def action_to_str(action: Action) -> str:
- if isinstance(action, CmdRunAction):
- return f'{action.thought}\n<execute_bash>\n{action.command}\n</execute_bash>'
- elif isinstance(action, IPythonRunCellAction):
- return f'{action.thought}\n<execute_ipython>\n{action.code}\n</execute_ipython>'
- elif isinstance(action, BrowseInteractiveAction):
- return f'{action.thought}\n<execute_browse>\n{action.browser_actions}\n</execute_browse>'
- elif isinstance(action, MessageAction):
- return action.content
- return ''
- def get_action_message(action: Action) -> dict[str, str] | None:
- if (
- isinstance(action, BrowseInteractiveAction)
- or isinstance(action, CmdRunAction)
- or isinstance(action, IPythonRunCellAction)
- or isinstance(action, MessageAction)
- ):
- return {
- 'role': 'user' if action.source == 'user' else 'assistant',
- 'content': action_to_str(action),
- }
- return None
- def get_observation_message(obs) -> dict[str, str] | None:
- if isinstance(obs, CmdOutputObservation):
- content = 'OBSERVATION:\n' + truncate_observation(obs.content)
- content += (
- f'\n[Command {obs.command_id} finished with exit code {obs.exit_code}]]'
- )
- return {'role': 'user', 'content': content}
- elif isinstance(obs, IPythonRunCellObservation):
- content = 'OBSERVATION:\n' + obs.content
- # replace base64 images with a placeholder
- splitted = content.split('\n')
- for i, line in enumerate(splitted):
- if ' already displayed to user'
- )
- content = '\n'.join(splitted)
- content = truncate_observation(content)
- return {'role': 'user', 'content': content}
- elif isinstance(obs, BrowserOutputObservation):
- content = 'OBSERVATION:\n' + truncate_observation(obs.content)
- return {'role': 'user', 'content': content}
- return None
- def truncate_observation(observation: str, max_chars: int = 10_000) -> str:
- """
- Truncate the middle of the observation if it is too long.
- """
- if len(observation) <= max_chars:
- return observation
- half = max_chars // 2
- return (
- observation[:half]
- + '\n[... Observation truncated due to length ...]\n'
- + observation[-half:]
- )
- # FIXME: We can tweak these two settings to create MicroAgents specialized toward different area
- def get_system_message() -> str:
- if ENABLE_GITHUB:
- return f'{SYSTEM_PREFIX}\n{GITHUB_MESSAGE}\n\n{COMMAND_DOCS}\n\n{SYSTEM_SUFFIX}'
- else:
- return f'{SYSTEM_PREFIX}\n\n{COMMAND_DOCS}\n\n{SYSTEM_SUFFIX}'
- def get_in_context_example() -> str:
- return EXAMPLES
- class CodeActAgent(Agent):
- VERSION = '1.5'
- """
- The Code Act Agent is a minimalist agent.
- The agent works by passing the model a list of action-observation pairs and prompting the model to take the next step.
- ### Overview
- This agent implements the CodeAct idea ([paper](https://arxiv.org/abs/2402.13463), [tweet](https://twitter.com/xingyaow_/status/1754556835703751087)) that consolidates LLM agents’ **act**ions into a unified **code** action space for both *simplicity* and *performance* (see paper for more details).
- The conceptual idea is illustrated below. At each turn, the agent can:
- 1. **Converse**: Communicate with humans in natural language to ask for clarification, confirmation, etc.
- 2. **CodeAct**: Choose to perform the task by executing code
- - Execute any valid Linux `bash` command
- - Execute any valid `Python` code with [an interactive Python interpreter](https://ipython.org/). This is simulated through `bash` command, see plugin system below for more details.
- 
- ### Plugin System
- To make the CodeAct agent more powerful with only access to `bash` action space, CodeAct agent leverages OpenDevin's plugin system:
- - [Jupyter plugin](https://github.com/OpenDevin/OpenDevin/tree/main/opendevin/runtime/plugins/jupyter): for IPython execution via bash command
- - [SWE-agent tool plugin](https://github.com/OpenDevin/OpenDevin/tree/main/opendevin/runtime/plugins/swe_agent_commands): Powerful bash command line tools for software development tasks introduced by [swe-agent](https://github.com/princeton-nlp/swe-agent).
- ### Demo
- https://github.com/OpenDevin/OpenDevin/assets/38853559/f592a192-e86c-4f48-ad31-d69282d5f6ac
- *Example of CodeActAgent with `gpt-4-turbo-2024-04-09` performing a data science task (linear regression)*
- ### Work-in-progress & Next step
- [] Support web-browsing
- [] Complete the workflow for CodeAct agent to submit Github PRs
- """
- sandbox_plugins: list[PluginRequirement] = [
- # NOTE: AgentSkillsRequirement need to go before JupyterRequirement, since
- # AgentSkillsRequirement provides a lot of Python functions
- # and it need to be initialized before Jupyter for Jupyter to use those functions.
- AgentSkillsRequirement(),
- JupyterRequirement(),
- ]
- runtime_tools: list[RuntimeTool] = [RuntimeTool.BROWSER]
- jupyter_kernel_init_code: str = 'from agentskills import *'
- system_message: str = get_system_message()
- in_context_example: str = f"Here is an example of how you can interact with the environment for task solving:\n{get_in_context_example()}\n\nNOW, LET'S START!"
- def __init__(
- self,
- llm: LLM,
- ) -> None:
- """
- Initializes a new instance of the CodeActAgent class.
- Parameters:
- - llm (LLM): The llm to be used by this agent
- """
- super().__init__(llm)
- self.reset()
- def reset(self) -> None:
- """
- Resets the CodeAct Agent.
- """
- super().reset()
- def step(self, state: State) -> Action:
- """
- Performs one step using the CodeAct Agent.
- This includes gathering info on previous steps and prompting the model to make a command to execute.
- Parameters:
- - state (State): used to get updated info and background commands
- Returns:
- - CmdRunAction(command) - bash command to run
- - IPythonRunCellAction(code) - IPython code to run
- - BrowseInteractiveAction(browsergym_command) - BrowserGym commands to run
- - MessageAction(content) - Message action to run (e.g. ask for clarification)
- - AgentFinishAction() - end the interaction
- """
- messages: list[dict[str, str]] = [
- {'role': 'system', 'content': self.system_message},
- {'role': 'user', 'content': self.in_context_example},
- ]
- for prev_action, obs in state.history:
- action_message = get_action_message(prev_action)
- if action_message:
- messages.append(action_message)
- obs_message = get_observation_message(obs)
- if obs_message:
- messages.append(obs_message)
- latest_user_message = [m for m in messages if m['role'] == 'user'][-1]
- if latest_user_message:
- if latest_user_message['content'].strip() == '/exit':
- return AgentFinishAction()
- latest_user_message['content'] += (
- f'\n\nENVIRONMENT REMINDER: You have {state.max_iterations - state.iteration} turns left to complete the task.'
- )
- response = self.llm.do_completion(
- messages=messages,
- stop=[
- '</execute_ipython>',
- '</execute_bash>',
- '</execute_browse>',
- ],
- temperature=0.0,
- )
- action_str: str = parse_response(response)
- state.num_of_chars += sum(
- len(message['content']) for message in messages
- ) + len(action_str)
- if finish_command := re.search(r'<finish>.*</finish>', action_str, re.DOTALL):
- thought = action_str.replace(finish_command.group(0), '').strip()
- return AgentFinishAction(thought=thought)
- if bash_command := re.search(
- r'<execute_bash>(.*?)</execute_bash>', action_str, re.DOTALL
- ):
- # remove the command from the action string to get thought
- thought = action_str.replace(bash_command.group(0), '').strip()
- # a command was found
- command_group = bash_command.group(1).strip()
- if command_group.strip() == 'exit':
- return AgentFinishAction()
- return CmdRunAction(command=command_group, thought=thought)
- elif python_code := re.search(
- r'<execute_ipython>(.*?)</execute_ipython>', action_str, re.DOTALL
- ):
- # a code block was found
- code_group = python_code.group(1).strip()
- thought = action_str.replace(python_code.group(0), '').strip()
- return IPythonRunCellAction(
- code=code_group,
- thought=thought,
- kernel_init_code=self.jupyter_kernel_init_code,
- )
- elif browse_command := re.search(
- r'<execute_browse>(.*)</execute_browse>', action_str, re.DOTALL
- ):
- # BrowserGym actions was found
- browse_actions = browse_command.group(1).strip()
- thought = action_str.replace(browse_command.group(0), '').strip()
- return BrowseInteractiveAction(
- browser_actions=browse_actions, thought=thought
- )
- else:
- # We assume the LLM is GOOD enough that when it returns pure natural language
- # it want to talk to the user
- return MessageAction(content=action_str, wait_for_response=True)
- def search_memory(self, query: str) -> list[str]:
- raise NotImplementedError('Implement this abstract method')
|