| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269 |
- import re
- from agenthub.codeact_agent.prompt import (
- COMMAND_DOCS,
- EXAMPLES,
- GITHUB_MESSAGE,
- SYSTEM_PREFIX,
- SYSTEM_SUFFIX,
- )
- from opendevin.controller.agent import Agent
- from opendevin.controller.state.state import State
- from opendevin.core.logger import opendevin_logger as logger
- from opendevin.events.action import (
- Action,
- AgentFinishAction,
- CmdRunAction,
- IPythonRunCellAction,
- MessageAction,
- )
- from opendevin.events.observation import (
- CmdOutputObservation,
- IPythonRunCellObservation,
- )
- from opendevin.llm.llm import LLM
- from opendevin.runtime.plugins import (
- JupyterRequirement,
- PluginRequirement,
- SWEAgentCommandsRequirement,
- )
- ENABLE_GITHUB = True
- def parse_response(response) -> str:
- action = response.choices[0].message.content
- for lang in ['bash', 'ipython']:
- if f'<execute_{lang}>' in action and f'</execute_{lang}>' not in action:
- action += f'</execute_{lang}>'
- return action
- def truncate_observation(observation: str, max_chars: int = 10_000) -> str:
- """
- Truncate the middle of the observation if it is too long.
- """
- if len(observation) <= max_chars:
- return observation
- half = max_chars // 2
- return (
- observation[:half]
- + '\n[... Observation truncated due to length ...]\n'
- + observation[-half:]
- )
- def swe_agent_edit_hack(bash_command: str) -> str:
- """
- Hack to handle the SWE-agent edit command. The vanilla edit command will hang the SSHBox.
- REPLACE THIS:
- edit 683:693
- try:
- return list(urlsplit(url))
- except ValueError:
- raise ValidationError(self.error_messages['invalid'], code='invalid')
- end_of_edit
- WITH THIS:
- edit 683:693 <<EOF
- try:
- return list(urlsplit(url))
- except ValueError:
- raise ValidationError(self.error_messages['invalid'], code='invalid')
- EOF
- """
- if 'edit' in bash_command:
- # edit\s(\d+):(\d+)([\s\S]*)end_of_edit
- # replace
- bash_command = re.sub(
- r'edit\s(\d+):(\d+)([\s\S]*?)end_of_edit',
- r'edit \1:\2 <<EOF\3EOF',
- bash_command,
- )
- return bash_command
- class CodeActAgent(Agent):
- VERSION = '1.2'
- """
- The Code Act Agent is a minimalist agent.
- The agent works by passing the model a list of action-observation pairs and prompting the model to take the next step.
- ### Overview
- This agent implements the CodeAct idea ([paper](https://arxiv.org/abs/2402.13463), [tweet](https://twitter.com/xingyaow_/status/1754556835703751087)) that consolidates LLM agents’ **act**ions into a unified **code** action space for both *simplicity* and *performance* (see paper for more details).
- The conceptual idea is illustrated below. At each turn, the agent can:
- 1. **Converse**: Communicate with humans in natural language to ask for clarification, confirmation, etc.
- 2. **CodeAct**: Choose to perform the task by executing code
- - Execute any valid Linux `bash` command
- - Execute any valid `Python` code with [an interactive Python interpreter](https://ipython.org/). This is simulated through `bash` command, see plugin system below for more details.
- 
- ### Plugin System
- To make the CodeAct agent more powerful with only access to `bash` action space, CodeAct agent leverages OpenDevin's plugin system:
- - [Jupyter plugin](https://github.com/OpenDevin/OpenDevin/tree/main/opendevin/runtime/plugins/jupyter): for IPython execution via bash command
- - [SWE-agent tool plugin](https://github.com/OpenDevin/OpenDevin/tree/main/opendevin/runtime/plugins/swe_agent_commands): Powerful bash command line tools for software development tasks introduced by [swe-agent](https://github.com/princeton-nlp/swe-agent).
- ### Demo
- https://github.com/OpenDevin/OpenDevin/assets/38853559/f592a192-e86c-4f48-ad31-d69282d5f6ac
- *Example of CodeActAgent with `gpt-4-turbo-2024-04-09` performing a data science task (linear regression)*
- ### Work-in-progress & Next step
- [] Support web-browsing
- [] Complete the workflow for CodeAct agent to submit Github PRs
- """
- sandbox_plugins: list[PluginRequirement] = [
- JupyterRequirement(),
- SWEAgentCommandsRequirement(),
- ]
- system_message: str = (
- f'{SYSTEM_PREFIX}\n{GITHUB_MESSAGE}\n\n{COMMAND_DOCS}\n\n{SYSTEM_SUFFIX}'
- if ENABLE_GITHUB
- else f'{SYSTEM_PREFIX}\n\n{COMMAND_DOCS}\n\n{SYSTEM_SUFFIX}'
- )
- def __init__(
- self,
- llm: LLM,
- ) -> None:
- """
- Initializes a new instance of the CodeActAgent class.
- Parameters:
- - llm (LLM): The llm to be used by this agent
- """
- super().__init__(llm)
- self.reset()
- def reset(self) -> None:
- """
- Resets the CodeAct Agent.
- """
- super().reset()
- self.messages: list[dict[str, str]] = [
- {'role': 'system', 'content': self.system_message},
- {
- 'role': 'user',
- 'content': f"Here is an example of how you can interact with the environment for task solving:\n{EXAMPLES}\n\nNOW, LET'S START!",
- },
- ]
- self.cost_accumulator = 0
- def step(self, state: State) -> Action:
- """
- Performs one step using the CodeAct Agent.
- This includes gathering info on previous steps and prompting the model to make a command to execute.
- Parameters:
- - state (State): used to get updated info and background commands
- Returns:
- - CmdRunAction(command) - bash command to run
- - IPythonRunCellAction(code) - IPython code to run
- - MessageAction(content) - Message action to run (e.g. ask for clarification)
- - AgentFinishAction() - end the interaction
- """
- updated_info = state.updated_info
- if updated_info:
- for prev_action, obs in updated_info:
- if (
- isinstance(prev_action, MessageAction)
- and prev_action.source == 'user'
- ):
- self.messages.append(
- {'role': 'user', 'content': prev_action.content}
- )
- if prev_action.content.strip() == '/exit':
- # User wants to exit
- return AgentFinishAction()
- if isinstance(obs, CmdOutputObservation):
- content = 'OBSERVATION:\n' + truncate_observation(obs.content)
- content += f'\n[Command {obs.command_id} finished with exit code {obs.exit_code}]]'
- self.messages.append({'role': 'user', 'content': content})
- elif isinstance(obs, IPythonRunCellObservation):
- content = 'OBSERVATION:\n' + obs.content
- # replace base64 images with a placeholder
- splitted = content.split('\n')
- for i, line in enumerate(splitted):
- if ' already displayed to user'
- )
- content = '\n'.join(splitted)
- content = truncate_observation(content)
- self.messages.append({'role': 'user', 'content': content})
- latest_user_message = [m for m in self.messages if m['role'] == 'user'][-1]
- if latest_user_message:
- latest_user_message['content'] += (
- f'\n\nENVIRONMENT REMINDER: You have {state.max_iterations - state.iteration} turns left to complete the task.'
- )
- response = self.llm.completion(
- messages=self.messages,
- stop=[
- '</execute_ipython>',
- '</execute_bash>',
- ],
- temperature=0.0,
- )
- self.log_cost(response)
- action_str: str = parse_response(response)
- state.num_of_chars += sum(
- len(message['content']) for message in self.messages
- ) + len(action_str)
- self.messages.append({'role': 'assistant', 'content': action_str})
- if finish_command := re.search(r'<finish>.*</finish>', action_str, re.DOTALL):
- thought = action_str.replace(finish_command.group(0), '').strip()
- return AgentFinishAction(thought=thought)
- if bash_command := re.search(
- r'<execute_bash>(.*)</execute_bash>', action_str, re.DOTALL
- ):
- # remove the command from the action string to get thought
- thought = action_str.replace(bash_command.group(0), '').strip()
- # a command was found
- command_group = bash_command.group(1).strip()
- command_group = swe_agent_edit_hack(command_group)
- if command_group.strip() == 'exit':
- return AgentFinishAction()
- return CmdRunAction(command=command_group, thought=thought)
- elif python_code := re.search(
- r'<execute_ipython>(.*)</execute_ipython>', action_str, re.DOTALL
- ):
- # a code block was found
- code_group = python_code.group(1).strip()
- thought = action_str.replace(python_code.group(0), '').strip()
- return IPythonRunCellAction(code=code_group, thought=thought)
- else:
- # We assume the LLM is GOOD enough that when it returns pure natural language
- # it want to talk to the user
- return MessageAction(content=action_str, wait_for_response=True)
- def search_memory(self, query: str) -> list[str]:
- raise NotImplementedError('Implement this abstract method')
- def log_cost(self, response):
- cur_cost = self.llm.completion_cost(response)
- self.cost_accumulator += cur_cost
- logger.info(
- 'Cost: %.2f USD | Accumulated Cost: %.2f USD',
- cur_cost,
- self.cost_accumulator,
- )
|