| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355 |
- import asyncio
- import json
- import logging
- import multiprocessing as mp
- import os
- import pathlib
- import subprocess
- import time
- from concurrent.futures import ProcessPoolExecutor
- from tqdm import tqdm
- from utils import encode_question, get_data
- from opendevin.controller.state.state import State
- from opendevin.core.config import config, get_llm_config_arg, get_parser
- from opendevin.core.logger import get_console_handler
- from opendevin.core.logger import opendevin_logger as logger
- from opendevin.core.main import main
- from opendevin.events.action import MessageAction
- from opendevin.events.serialization.event import event_to_dict
- def cleanup():
- print('Cleaning up child processes...')
- for process in mp.active_children():
- print(f'Terminating child process: {process.name}')
- process.terminate()
- process.join()
- def codeact_user_response(state: State) -> str:
- msg = (
- #'Please continue working on the task on whatever approach you think is suitable.\n'
- 'Please run the following command: <execute_bash> exit </execute_bash>.\n'
- #'IMPORTANT: YOU SHOULD NEVER ASK FOR HUMAN HELP OR USE THE INTERNET TO SOLVE THIS TASK.\n'
- )
- if state.history:
- user_msgs = [
- action
- for action, _ in state.history
- if isinstance(action, MessageAction) and action.source == 'user'
- ]
- if len(user_msgs) >= 2:
- # let the agent know that it can give up when it has tried 3 times
- return (
- msg
- + 'If you want to give up, run: <execute_bash> exit </execute_bash>.\n'
- )
- return msg
- def monologue_user_response(state: State) -> str:
- raise NotImplementedError('MonologueAgent should never ask for user responses.')
- AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
- 'CodeActAgent': codeact_user_response,
- 'MonologueAgent': monologue_user_response,
- }
- AGENT_CLS_TO_INST_SUFFIX = {
- 'CodeActAgent': 'When you think you have completed the request, please run the following command: <execute_bash> exit </execute_bash>.\n'
- }
- def process_instance(
- question_id, question, agent_class, metadata, reset_logger: bool = True
- ):
- # create process-specific workspace dir
- # we will create a workspace directory for EACH process
- # so that different agent don't interfere with each other.
- old_workspace_mount_path = config.workspace_mount_path
- try:
- workspace_mount_path = os.path.join(
- config.workspace_mount_path, '_eval_workspace'
- )
- workspace_mount_path = os.path.join(workspace_mount_path, str(os.getpid()))
- pathlib.Path(workspace_mount_path).mkdir(parents=True, exist_ok=True)
- config.workspace_mount_path = workspace_mount_path
- # Setup the logger properly, so you can run multi-processing to parallize the evaluation
- eval_output_dir = metadata['eval_output_dir']
- if reset_logger:
- # Set up logger
- log_file = os.path.join(
- eval_output_dir, 'logs', f'instance_{question_id}.log'
- )
- # Remove all existing handlers from logger
- for handler in logger.handlers[:]:
- logger.removeHandler(handler)
- # add back the console handler to print ONE line
- logger.addHandler(get_console_handler())
- logger.info(
- f'Starting evaluation for instance {question_id}.\nLOG: tail -f {log_file}'
- )
- # Remove all existing handlers from logger
- for handler in logger.handlers[:]:
- logger.removeHandler(handler)
- file_handler = logging.FileHandler(log_file)
- file_handler.setFormatter(
- logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
- )
- logger.addHandler(file_handler)
- logger.info(f'Process-specific workspace mounted at {workspace_mount_path}')
- # Prepare instruction
- instruction = encode_question(question, metadata['hub'])
- instruction += 'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n'
- # NOTE: You can actually set slightly different instruction for different agents
- instruction += AGENT_CLS_TO_INST_SUFFIX.get(agent_class, '')
- # logger.info(f'Instruction:\n{instruction}', extra={'msg_type': 'OBSERVATION'})
- # Here's how you can run the agent (similar to the `main` function) and get the final task state
- state: State = asyncio.run(
- main(
- instruction,
- fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN.get(
- agent_class
- ),
- )
- )
- # ======= Attempt to evaluate the agent's edits =======
- # If you are working on simplier benchmark that only evaluates the final model output (e.g., in a MessageAction)
- # You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation.
- if state is None:
- raise ValueError('State should not be None.')
- model_answer_raw = ''
- for act, _ in reversed(state.history):
- if isinstance(act, MessageAction) and act.source == 'agent':
- model_answer_raw = act.content
- break
- # attempt to parse model_answer
- _, _, ast_eval = get_data(metadata['hub'])
- correct, hallucination = ast_eval(question_id, model_answer_raw)
- metrics = state.metrics.get() if state.metrics else None
- logger.info(
- f'Final message: {model_answer_raw} | Correctness: {correct} | Hallucination: {hallucination}'
- )
- # Save the output
- output = {
- 'question_id': question_id,
- 'text': model_answer_raw,
- 'correct': correct,
- 'hallucination': hallucination,
- 'answer_id': 'None',
- 'model_id': metadata['model_name'],
- 'metadata': metadata,
- 'history': [
- (event_to_dict(action), event_to_dict(obs))
- for action, obs in state.history
- ],
- 'metrics': metrics,
- 'error': state.error if state and state.error else None,
- }
- except Exception:
- logger.error('Process instance failed')
- raise
- finally:
- config.workspace_mount_path = old_workspace_mount_path
- return output
- if __name__ == '__main__':
- parser = get_parser()
- parser.add_argument(
- '--hubs',
- type=str,
- help='Which hubs to evaluate from APIBench. APIBench contains 3 hubs, namely huggingface, torch, and tensorflow. You could choose one or more from hf, torch, or tf, seperated by commas. For example, the default is --hub hf,torch,tf.',
- default='hf,torch,tf',
- )
- args, _ = parser.parse_known_args()
- if args.directory:
- config.workspace_base = os.path.abspath(args.directory)
- print(f'Setting workspace base to {config.workspace_base}')
- # Check https://github.com/OpenDevin/OpenDevin/blob/main/evaluation/swe_bench/README.md#configure-opendevin-and-your-llm
- # for details of how to set `llm_config`
- if args.llm_config:
- specified_llm_config = get_llm_config_arg(args.llm_config)
- if specified_llm_config:
- config.llm = specified_llm_config
- logger.info(f'Config for evaluation: {config}')
- agent_class = args.agent_cls
- assert (
- agent_class in AGENT_CLS_TO_FAKE_USER_RESPONSE_FN
- ), f'Unsupported agent class: {agent_class}'
- model_name = config.llm.model.split('/')[-1]
- max_iterations = args.max_iterations
- eval_note = ''
- if args.eval_note is not None:
- eval_note += '_N_' + args.eval_note
- eval_output_dir = os.path.join(
- args.eval_output_dir,
- 'gorilla',
- agent_class,
- model_name + '_maxiter_' + str(max_iterations) + eval_note,
- )
- pathlib.Path(eval_output_dir).mkdir(parents=True, exist_ok=True)
- pathlib.Path(os.path.join(eval_output_dir, 'logs')).mkdir(
- parents=True, exist_ok=True
- )
- logger.info(f'Using evaluation output directory: {eval_output_dir}')
- hubs = []
- if 'hf' in args.hubs:
- hubs.append('hf')
- if 'torch' in args.hubs or 'th' in args.hubs:
- hubs.append('torch')
- if 'tf' in args.hubs:
- hubs.append('tf')
- if hubs == []:
- raise ValueError('Please choose at least one from hf, torch, and tf for hubs.')
- for hub in hubs:
- logger.info(f'Evaluating APIBench {hub} test')
- questions, question_ids, ast_eval = get_data(hub)
- # TEST METADATA
- metadata = {
- 'hub': hub,
- 'agent_class': agent_class,
- 'model_name': model_name,
- 'max_iterations': max_iterations,
- 'eval_output_dir': eval_output_dir,
- 'start_time': time.strftime('%Y-%m-%d %H:%M:%S'),
- # get the commit id of current repo for reproduciblity
- 'git_commit': subprocess.check_output(['git', 'rev-parse', 'HEAD'])
- .decode('utf-8')
- .strip(),
- }
- logger.info(f'Metadata: {metadata}')
- with open(os.path.join(eval_output_dir, f'metadata_{hub}.json'), 'w') as f:
- json.dump(metadata, f)
- # LIMIT EVALUATION
- eval_n_limit = args.eval_n_limit
- if eval_n_limit:
- questions = questions[: (eval_n_limit // len(hubs))]
- question_ids = question_ids[: (eval_n_limit // len(hubs))]
- logger.info(
- f'Limiting evaluation to a total of first {eval_n_limit} instances -> first {eval_n_limit//len(hubs)} instances per hub.'
- )
- output_file = os.path.join(eval_output_dir, f'output_{model_name}_{hub}.jsonl')
- logger.info(f'Writing evaluation output to {output_file}')
- finished_task_ids = set()
- if os.path.exists(output_file):
- with open(output_file, 'r') as f:
- for line in f:
- data = json.loads(line)
- for i in range(len(question_ids)):
- if question_ids[i] == int(data['question_id']):
- finished_task_ids.add(data['question_id'])
- logger.warning(
- f'Output file {output_file} already exists. Loaded {len(finished_task_ids)} finished instances.'
- )
- output_fp = open(output_file, 'a')
- logger.info(
- f'Evaluation started with Agent {agent_class}, model {model_name}, max iterations {max_iterations}.'
- )
- # =============================================
- # filter out finished instances
- new_questions = []
- new_question_ids = []
- for i in range(len(question_ids)):
- if question_ids[i] in finished_task_ids:
- logger.info(
- f'Skipping instance {question_ids[i]} as it is already finished.'
- )
- continue
- new_questions.append(questions[i])
- new_question_ids.append(question_ids[i])
- finished_task_number = len(finished_task_ids)
- questions = new_questions
- question_ids = new_question_ids
- logger.info(
- f'Finished instances: {finished_task_number}, Remaining instances: {len(question_ids)}'
- )
- # =============================================
- pbar = tqdm(total=len(question_ids))
- # This function tracks the progress AND write the output to a JSONL file
- def update_progress(future, pbar, output_fp, finished_task_ids):
- pbar.update(1)
- output = future.result()
- pbar.set_description(f'Instance {output["question_id"]}')
- pbar.set_postfix_str(f'Test Result: {output["correct"]}')
- logger.info(
- f'Finished evaluation for instance {output["question_id"]}: {output["correct"]}'
- )
- output_fp.write(json.dumps(output) + '\n')
- output_fp.flush()
- finished_task_ids.add(output['question_id'])
- # This sets the multi-processing
- num_workers = args.eval_num_workers
- logger.info(f'Using {num_workers} workers for evaluation.')
- try:
- with ProcessPoolExecutor(num_workers) as executor:
- futures = []
- # This is how we perform multi-processing
- for i in range(len(question_ids)):
- try:
- question_id = question_ids[i]
- question = questions[i]
- future = executor.submit(
- process_instance,
- question_id,
- question,
- agent_class,
- metadata,
- reset_logger=bool(num_workers > 1),
- )
- future.add_done_callback(
- update_progress, pbar, output_fp, finished_task_ids
- )
- futures.append(future)
- except Exception:
- continue
- # Wait for all futures to complete
- for future in futures:
- try:
- future.result()
- except Exception:
- continue
- except KeyboardInterrupt:
- logger.info('KeyboardInterrupt received. Cleaning up...')
- cleanup()
- output_fp.close()
- total_correct = 0
- total_hallucination = 0
- output = []
- with open(output_file, 'r') as f:
- for line in f:
- data = json.loads(line)
- output.append(data)
- if int(data['question_id']) in finished_task_ids:
- if str(data['correct']).lower() == 'true':
- total_correct += 1
- if str(data['hallucination']).lower() == 'true':
- total_hallucination += 1
- # sort all output by question_id
- output = sorted(output, key=lambda x: x['question_id'])
- with open(output_file, 'w') as f:
- for dat in output:
- f.write(json.dumps(dat) + '\n')
- f.flush()
- logger.info(
- f'Evaluation finished for {hub}. Total: {len(question_ids)+finished_task_number}; Correct: {total_correct}; Hallucination: {total_hallucination}. Accuracy: {total_correct / (len(question_ids)+finished_task_number)}'
- )
|