| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331 |
- import asyncio
- import json
- import logging
- import multiprocessing as mp
- import os
- import pathlib
- import subprocess
- import time
- from concurrent.futures import ProcessPoolExecutor
- # import huggingface_hub
- from datasets import load_dataset
- from tqdm import tqdm
- from evaluation.EDA.game import Q20Game, Q20GameCelebrity
- # from evaluation.EDA.scorer import question_scorer
- from opendevin.controller.state.state import State
- from opendevin.core.config import config, get_llm_config_arg, get_parser
- from opendevin.core.logger import get_console_handler
- from opendevin.core.logger import opendevin_logger as logger
- from opendevin.core.main import main
- from opendevin.events.action import MessageAction
- from opendevin.events.serialization.event import event_to_dict
- game = None
- def cleanup():
- print('Cleaning up child processes...')
- for process in mp.active_children():
- print(f'Terminating child process: {process.name}')
- process.terminate()
- process.join()
- def codeact_user_response(state: State) -> str:
- global game
- model_guess = ''
- if state.history:
- for act, _ in reversed(state.history):
- if isinstance(act, MessageAction) and act.source == 'agent':
- model_guess = act.content
- break
- msg = game.generate_user_response(model_guess)
- game.curr_turn += 1
- logger.info(f'Model guess: {model_guess}')
- logger.info(f'Anwser response: {msg}')
- if 'bingo!' in msg.lower():
- return '/exit'
- return msg
- def monologue_user_response(state: State) -> str:
- raise NotImplementedError('MonologueAgent should never ask for user responses.')
- AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
- 'CodeActAgent': codeact_user_response,
- 'MonologueAgent': monologue_user_response,
- }
- AGENT_CLS_TO_INST_SUFFIX = {
- 'CodeActAgent': 'When you think you have solved the question, please first send your answer to user through message and then exit.\n'
- }
- def process_instance(instance, agent_class, metadata, reset_logger: bool = True):
- # Setup the logger properly, so you can run multi-processing to parallize the evaluation
- eval_output_dir = metadata['eval_output_dir']
- if reset_logger:
- # Set up logger
- log_file = os.path.join(
- eval_output_dir, 'logs', f'instance_{instance["text"].strip()}.log'
- )
- # Remove all existing handlers from logger
- for handler in logger.handlers[:]:
- logger.removeHandler(handler)
- # add back the console handler to print ONE line
- logger.addHandler(get_console_handler())
- logger.info(
- f'Starting evaluation for instance {instance["text"].strip()}.\nLOG: tail -f {log_file}'
- )
- # Remove all existing handlers from logger
- for handler in logger.handlers[:]:
- logger.removeHandler(handler)
- file_handler = logging.FileHandler(log_file)
- file_handler.setFormatter(
- logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
- )
- logger.addHandler(file_handler)
- # Prepare instruction
- _game_class = {'things': Q20Game, 'celebs': Q20GameCelebrity}
- guesser_kargs = {
- 'max_new_tokens': 64,
- 'temperature': 0.8,
- 'repetition_penalty': 1.0,
- 'do_sample': True,
- } # no penalty
- # Use codeactagent as guesser_model
- global game
- game = _game_class[metadata['dataset']](
- item=instance['text'].strip(),
- answerer_model=metadata['answerer_model'],
- guesser_model=None,
- num_turns=metadata['max_iterations'],
- openai_api_key=metadata['openai_api'],
- guesser_kargs=guesser_kargs,
- )
- instruction = f'{game.first_user_utterance}'
- logger.info(f'Instruction: {instruction}')
- # instruction += 'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n'
- # NOTE: You can actually set slightly different instruction for different agents
- instruction += AGENT_CLS_TO_INST_SUFFIX.get(agent_class, '')
- # Here's how you can run the agent (similar to the `main` function) and get the final task state
- state: State = asyncio.run(
- main(
- instruction,
- fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN.get(agent_class),
- )
- )
- # ======= Attempt to evaluate the agent's edits =======
- # If you are working on simpler benchmark that only evaluates the final model output (e.g., in a MessageAction)
- # You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation.
- if state is None:
- raise ValueError('State should not be None.')
- final_message = ''
- for act, _ in reversed(state.history):
- if isinstance(act, MessageAction) and act.source == 'agent':
- final_message = act.content
- break
- logger.info(f'Final message: {final_message} | Ground truth: {instance["text"]}')
- test_result = game.reward()
- # Save the output
- output = {
- 'instance_id': instance['text'].strip(),
- 'instance': instance,
- 'instruction': instruction,
- 'metadata': metadata,
- 'history': [
- (event_to_dict(action), event_to_dict(obs)) for action, obs in state.history
- ],
- 'error': state.error if state and state.error else None,
- 'test_result': {
- 'success': test_result,
- 'final_message': final_message,
- 'ground_truth': instance['text'],
- },
- }
- return output
- if __name__ == '__main__':
- parser = get_parser()
- parser.add_argument(
- '--answerer_model', '-a', default='gpt-3.5-turbo', help='answerer model'
- )
- parser.add_argument(
- '--dataset',
- default='things',
- choices=['things', 'celebs'],
- type=str,
- help='dataset to be used',
- )
- parser.add_argument(
- '--OPENAI_API_KEY', type=str, required=True, help='Your OpenAI API key'
- )
- parser.add_argument(
- '--data-split',
- default='test',
- type=str,
- help='data split, eg, test',
- )
- args, _ = parser.parse_known_args()
- if args.directory:
- config.workspace_base = os.path.abspath(args.directory)
- print(f'Setting workspace base to {config.workspace_base}')
- # NOTE: It is preferable to load datasets from huggingface datasets and perform post-processing
- # so we don't need to manage file uploading to OpenDevin's repo
- eda_dataset = load_dataset(
- 'yizheapple/entity-deduction-arena', name=args.dataset, split=args.data_split
- )
- logger.info(
- f'Evaluating Entity Deduction Arena {args.dataset} {args.data_split} split'
- )
- # Check https://github.com/OpenDevin/OpenDevin/blob/main/evaluation/swe_bench/README.md#configure-opendevin-and-your-llm
- # for details of how to set `llm_config`
- if args.llm_config:
- specified_llm_config = get_llm_config_arg(args.llm_config)
- if specified_llm_config:
- config.llm = specified_llm_config
- logger.info(f'Config for evaluation: {config}')
- # TEST METADATA
- agent_class = args.agent_cls
- assert (
- agent_class in AGENT_CLS_TO_FAKE_USER_RESPONSE_FN
- ), f'Unsupported agent class: {agent_class}'
- model_name = config.llm.model.split('/')[-1]
- max_iterations = args.max_iterations
- eval_note = ''
- if args.eval_note is not None:
- eval_note += '_N_' + args.eval_note
- eval_output_dir = os.path.join(
- args.eval_output_dir,
- 'eda',
- agent_class,
- model_name + '_maxiter_' + str(max_iterations) + eval_note,
- )
- pathlib.Path(eval_output_dir).mkdir(parents=True, exist_ok=True)
- pathlib.Path(os.path.join(eval_output_dir, 'logs')).mkdir(
- parents=True, exist_ok=True
- )
- logger.info(f'Using evaluation output directory: {eval_output_dir}')
- metadata = {
- 'dataset': args.dataset,
- 'data_split': args.data_split,
- 'answerer_model': args.answerer_model,
- 'agent_class': agent_class,
- 'openai_api': args.OPENAI_API_KEY,
- 'model_name': model_name,
- 'max_iterations': max_iterations,
- 'eval_output_dir': eval_output_dir,
- 'start_time': time.strftime('%Y-%m-%d %H:%M:%S'),
- # get the commit id of current repo for reproducibility
- 'git_commit': subprocess.check_output(['git', 'rev-parse', 'HEAD'])
- .decode('utf-8')
- .strip(),
- }
- logger.info(f'Metadata: {metadata}')
- with open(os.path.join(eval_output_dir, 'metadata.json'), 'w') as f:
- json.dump(metadata, f)
- # LIMIT EVALUATION
- eval_n_limit = args.eval_n_limit
- if eval_n_limit:
- eda_dataset = eda_dataset.select(list(range(eval_n_limit)))
- logger.info(f'Limiting evaluation to first {eval_n_limit} instances.')
- # OUTPUT FILE
- output_file = os.path.join(eval_output_dir, 'output.jsonl')
- logger.info(f'Writing evaluation output to {output_file}')
- finished_items = set()
- if os.path.exists(output_file):
- with open(output_file, 'r') as f:
- for line in f:
- data = json.loads(line)
- finished_items.add(data['instance_id'])
- logger.warning(
- f'Output file {output_file} already exists. Loaded {len(finished_items)} finished instances.'
- )
- output_fp = open(output_file, 'a')
- logger.info(
- f'Evaluation started with Agent {agent_class}, model {model_name}, max iterations {max_iterations}.'
- )
- # =============================================
- # filter out finished instances
- new_eda_dataset = []
- for instance in eda_dataset:
- if instance['text'].strip() in finished_items:
- logger.info(
- f'Skipping instance {instance["text"].strip()} as it is already finished.'
- )
- continue
- new_eda_dataset.append(instance)
- eda_dataset = new_eda_dataset
- logger.info(
- f'Finished instances: {len(finished_items)}, Remaining instances: {len(eda_dataset)}'
- )
- # =============================================
- pbar = tqdm(total=len(eda_dataset))
- # This function tracks the progress AND write the output to a JSONL file
- def update_progress(future):
- pbar.update(1)
- output = future.result()
- pbar.set_description(f'Instance {output["instance_id"]}')
- pbar.set_postfix_str(f'Test Result: {output["test_result"]}')
- logger.info(
- f'Finished evaluation for instance {output["instance_id"]}: {output["test_result"]}'
- )
- output_fp.write(json.dumps(output) + '\n')
- output_fp.flush()
- # This sets the multi-processing
- num_workers = args.eval_num_workers
- logger.info(f'Using {num_workers} workers for evaluation.')
- try:
- with ProcessPoolExecutor(num_workers) as executor:
- futures = []
- # This is how we perform multi-processing
- for instance in eda_dataset:
- future = executor.submit(
- process_instance,
- instance,
- agent_class,
- metadata,
- reset_logger=bool(num_workers > 1),
- )
- future.add_done_callback(update_progress)
- futures.append(future)
- # Wait for all futures to complete
- for future in futures:
- future.result()
- except KeyboardInterrupt:
- print('KeyboardInterrupt received. Cleaning up...')
- cleanup()
- output_fp.close()
- logger.info('Evaluation finished.')
|