| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563 |
- import argparse
- import logging
- import os
- import pathlib
- import platform
- import uuid
- from dataclasses import dataclass, field, fields, is_dataclass
- from types import UnionType
- from typing import Any, ClassVar, get_args, get_origin
- import toml
- from dotenv import load_dotenv
- from opendevin.core.utils import Singleton
- logger = logging.getLogger(__name__)
- load_dotenv()
- @dataclass
- class LLMConfig(metaclass=Singleton):
- """
- Configuration for the LLM model.
- Attributes:
- model: The model to use.
- api_key: The API key to use.
- base_url: The base URL for the API. This is necessary for local LLMs. It is also used for Azure embeddings.
- api_version: The version of the API.
- embedding_model: The embedding model to use.
- embedding_base_url: The base URL for the embedding API.
- embedding_deployment_name: The name of the deployment for the embedding API. This is used for Azure OpenAI.
- aws_access_key_id: The AWS access key ID.
- aws_secret_access_key: The AWS secret access key.
- aws_region_name: The AWS region name.
- num_retries: The number of retries to attempt.
- retry_min_wait: The minimum time to wait between retries, in seconds. This is exponential backoff minimum. For models with very low limits, this can be set to 15-20.
- retry_max_wait: The maximum time to wait between retries, in seconds. This is exponential backoff maximum.
- timeout: The timeout for the API.
- max_chars: The maximum number of characters to send to and receive from the API. This is a fallback for token counting, which doesn't work in all cases.
- temperature: The temperature for the API.
- top_p: The top p for the API.
- custom_llm_provider: The custom LLM provider to use. This is undocumented in opendevin, and normally not used. It is documented on the litellm side.
- max_input_tokens: The maximum number of input tokens. Note that this is currently unused, and the value at runtime is actually the total tokens in OpenAI (e.g. 128,000 tokens for GPT-4).
- max_output_tokens: The maximum number of output tokens. This is sent to the LLM.
- input_cost_per_token: The cost per input token. This will available in logs for the user to check.
- output_cost_per_token: The cost per output token. This will available in logs for the user to check.
- """
- model: str = 'gpt-3.5-turbo'
- api_key: str | None = None
- base_url: str | None = None
- api_version: str | None = None
- embedding_model: str = 'local'
- embedding_base_url: str | None = None
- embedding_deployment_name: str | None = None
- aws_access_key_id: str | None = None
- aws_secret_access_key: str | None = None
- aws_region_name: str | None = None
- num_retries: int = 5
- retry_min_wait: int = 3
- retry_max_wait: int = 60
- timeout: int | None = None
- max_chars: int = 5_000_000 # fallback for token counting
- temperature: float = 0
- top_p: float = 0.5
- custom_llm_provider: str | None = None
- max_input_tokens: int | None = None
- max_output_tokens: int | None = None
- input_cost_per_token: float | None = None
- output_cost_per_token: float | None = None
- def defaults_to_dict(self) -> dict:
- """
- Serialize fields to a dict for the frontend, including type hints, defaults, and whether it's optional.
- """
- dict = {}
- for f in fields(self):
- dict[f.name] = get_field_info(f)
- return dict
- def __str__(self):
- attr_str = []
- for f in fields(self):
- attr_name = f.name
- attr_value = getattr(self, f.name)
- if attr_name in ['api_key', 'aws_access_key_id', 'aws_secret_access_key']:
- attr_value = '******' if attr_value else None
- attr_str.append(f'{attr_name}={repr(attr_value)}')
- return f"LLMConfig({', '.join(attr_str)})"
- def __repr__(self):
- return self.__str__()
- @dataclass
- class AgentConfig(metaclass=Singleton):
- """
- Configuration for the agent.
- Attributes:
- name: The name of the agent.
- memory_enabled: Whether long-term memory (embeddings) is enabled.
- memory_max_threads: The maximum number of threads indexing at the same time for embeddings.
- """
- name: str = 'CodeActAgent'
- memory_enabled: bool = False
- memory_max_threads: int = 2
- def defaults_to_dict(self) -> dict:
- """
- Serialize fields to a dict for the frontend, including type hints, defaults, and whether it's optional.
- """
- dict = {}
- for f in fields(self):
- dict[f.name] = get_field_info(f)
- return dict
- @dataclass
- class AppConfig(metaclass=Singleton):
- """
- Configuration for the app.
- Attributes:
- llm: The LLM configuration.
- agent: The agent configuration.
- runtime: The runtime environment.
- file_store: The file store to use.
- file_store_path: The path to the file store.
- workspace_base: The base path for the workspace. Defaults to ./workspace as an absolute path.
- workspace_mount_path: The path to mount the workspace. This is set to the workspace base by default.
- workspace_mount_path_in_sandbox: The path to mount the workspace in the sandbox. Defaults to /workspace.
- workspace_mount_rewrite: The path to rewrite the workspace mount path to.
- cache_dir: The path to the cache directory. Defaults to /tmp/cache.
- sandbox_container_image: The container image to use for the sandbox.
- run_as_devin: Whether to run as devin.
- max_iterations: The maximum number of iterations.
- max_budget_per_task: The maximum budget allowed per task, beyond which the agent will stop.
- e2b_api_key: The E2B API key.
- sandbox_type: The type of sandbox to use. Options are: ssh, exec, e2b, local.
- use_host_network: Whether to use the host network.
- ssh_hostname: The SSH hostname.
- disable_color: Whether to disable color. For terminals that don't support color.
- sandbox_user_id: The user ID for the sandbox.
- sandbox_timeout: The timeout for the sandbox.
- github_token: The GitHub token.
- debug: Whether to enable debugging.
- enable_auto_lint: Whether to enable auto linting. This is False by default, for regular runs of the app. For evaluation, please set this to True.
- """
- llm: LLMConfig = field(default_factory=LLMConfig)
- agent: AgentConfig = field(default_factory=AgentConfig)
- runtime: str = 'server'
- file_store: str = 'memory'
- file_store_path: str = '/tmp/file_store'
- workspace_base: str = os.path.join(os.getcwd(), 'workspace')
- workspace_mount_path: str | None = None
- workspace_mount_path_in_sandbox: str = '/workspace'
- workspace_mount_rewrite: str | None = None
- cache_dir: str = '/tmp/cache'
- sandbox_container_image: str = 'ghcr.io/opendevin/sandbox' + (
- f':{os.getenv("OPEN_DEVIN_BUILD_VERSION")}'
- if os.getenv('OPEN_DEVIN_BUILD_VERSION')
- else ':main'
- )
- run_as_devin: bool = True
- max_iterations: int = 100
- max_budget_per_task: float | None = None
- e2b_api_key: str = ''
- sandbox_type: str = 'ssh' # Can be 'ssh', 'exec', or 'e2b'
- use_host_network: bool = False
- ssh_hostname: str = 'localhost'
- disable_color: bool = False
- sandbox_user_id: int = os.getuid() if hasattr(os, 'getuid') else 1000
- sandbox_timeout: int = 120
- persist_sandbox: bool = False
- ssh_port: int = 63710
- ssh_password: str | None = None
- github_token: str | None = None
- jwt_secret: str = uuid.uuid4().hex
- debug: bool = False
- enable_auto_lint: bool = (
- False # once enabled, OpenDevin would lint files after editing
- )
- defaults_dict: ClassVar[dict] = {}
- def __post_init__(self):
- """
- Post-initialization hook, called when the instance is created with only default values.
- """
- AppConfig.defaults_dict = self.defaults_to_dict()
- def defaults_to_dict(self) -> dict:
- """
- Serialize fields to a dict for the frontend, including type hints, defaults, and whether it's optional.
- """
- dict = {}
- for f in fields(self):
- field_value = getattr(self, f.name)
- # dataclasses compute their defaults themselves
- if is_dataclass(type(field_value)):
- dict[f.name] = field_value.defaults_to_dict()
- else:
- dict[f.name] = get_field_info(f)
- return dict
- def __str__(self):
- attr_str = []
- for f in fields(self):
- attr_name = f.name
- attr_value = getattr(self, f.name)
- if attr_name in ['e2b_api_key', 'github_token']:
- attr_value = '******' if attr_value else None
- attr_str.append(f'{attr_name}={repr(attr_value)}')
- return f"AppConfig({', '.join(attr_str)}"
- def __repr__(self):
- return self.__str__()
- def get_field_info(field):
- """
- Extract information about a dataclass field: type, optional, and default.
- Args:
- field: The field to extract information from.
- Returns: A dict with the field's type, whether it's optional, and its default value.
- """
- field_type = field.type
- optional = False
- # for types like str | None, find the non-None type and set optional to True
- # this is useful for the frontend to know if a field is optional
- # and to show the correct type in the UI
- # Note: this only works for UnionTypes with None as one of the types
- if get_origin(field_type) is UnionType:
- types = get_args(field_type)
- non_none_arg = next((t for t in types if t is not type(None)), None)
- if non_none_arg is not None:
- field_type = non_none_arg
- optional = True
- # type name in a pretty format
- type_name = (
- field_type.__name__ if hasattr(field_type, '__name__') else str(field_type)
- )
- # default is always present
- default = field.default
- # return a schema with the useful info for frontend
- return {'type': type_name.lower(), 'optional': optional, 'default': default}
- def load_from_env(config: AppConfig, env_or_toml_dict: dict | os._Environ):
- """Reads the env-style vars and sets config attributes based on env vars or a config.toml dict.
- Compatibility with vars like LLM_BASE_URL, AGENT_MEMORY_ENABLED and others.
- Args:
- config: The AppConfig object to set attributes on.
- env_or_toml_dict: The environment variables or a config.toml dict.
- """
- def get_optional_type(union_type: UnionType) -> Any:
- """Returns the non-None type from an Union."""
- types = get_args(union_type)
- return next((t for t in types if t is not type(None)), None)
- # helper function to set attributes based on env vars
- def set_attr_from_env(sub_config: Any, prefix=''):
- """Set attributes of a config dataclass based on environment variables."""
- for field_name, field_type in sub_config.__annotations__.items():
- # compute the expected env var name from the prefix and field name
- # e.g. LLM_BASE_URL
- env_var_name = (prefix + field_name).upper()
- if is_dataclass(field_type):
- # nested dataclass
- nested_sub_config = getattr(sub_config, field_name)
- # the agent field: the env var for agent.name is just 'AGENT'
- if field_name == 'agent' and 'AGENT' in env_or_toml_dict:
- setattr(nested_sub_config, 'name', env_or_toml_dict[env_var_name])
- set_attr_from_env(nested_sub_config, prefix=field_name + '_')
- elif env_var_name in env_or_toml_dict:
- # convert the env var to the correct type and set it
- value = env_or_toml_dict[env_var_name]
- try:
- # if it's an optional type, get the non-None type
- if get_origin(field_type) is UnionType:
- field_type = get_optional_type(field_type)
- # Attempt to cast the env var to type hinted in the dataclass
- if field_type is bool:
- cast_value = str(value).lower() in ['true', '1']
- else:
- cast_value = field_type(value)
- setattr(sub_config, field_name, cast_value)
- except (ValueError, TypeError):
- logger.error(
- f'Error setting env var {env_var_name}={value}: check that the value is of the right type'
- )
- # Start processing from the root of the config object
- set_attr_from_env(config)
- def load_from_toml(config: AppConfig, toml_file: str = 'config.toml'):
- """Load the config from the toml file. Supports both styles of config vars.
- Args:
- config: The AppConfig object to update attributes of.
- """
- # try to read the config.toml file into the config object
- toml_config = {}
- try:
- with open(toml_file, 'r', encoding='utf-8') as toml_contents:
- toml_config = toml.load(toml_contents)
- except FileNotFoundError:
- # the file is optional, we don't need to do anything
- return
- except toml.TomlDecodeError:
- logger.warning(
- 'Cannot parse config from toml, toml values have not been applied.',
- exc_info=False,
- )
- return
- # if there was an exception or core is not in the toml, try to use the old-style toml
- if 'core' not in toml_config:
- # re-use the env loader to set the config from env-style vars
- load_from_env(config, toml_config)
- return
- core_config = toml_config['core']
- try:
- # set llm config from the toml file
- llm_config = config.llm
- if 'llm' in toml_config:
- llm_config = LLMConfig(**toml_config['llm'])
- # set agent config from the toml file
- agent_config = config.agent
- if 'agent' in toml_config:
- agent_config = AgentConfig(**toml_config['agent'])
- # update the config object with the new values
- config = AppConfig(llm=llm_config, agent=agent_config, **core_config)
- except (TypeError, KeyError):
- logger.warning(
- 'Cannot parse config from toml, toml values have not been applied.',
- exc_info=False,
- )
- def finalize_config(config: AppConfig):
- """
- More tweaks to the config after it's been loaded.
- """
- # Set workspace_mount_path if not set by the user
- if config.workspace_mount_path is None:
- config.workspace_mount_path = os.path.abspath(config.workspace_base)
- config.workspace_base = os.path.abspath(config.workspace_base)
- # In local there is no sandbox, the workspace will have the same pwd as the host
- if config.sandbox_type == 'local':
- config.workspace_mount_path_in_sandbox = config.workspace_mount_path
- if config.workspace_mount_rewrite: # and not config.workspace_mount_path:
- # TODO why do we need to check if workspace_mount_path is None?
- base = config.workspace_base or os.getcwd()
- parts = config.workspace_mount_rewrite.split(':')
- config.workspace_mount_path = base.replace(parts[0], parts[1])
- if config.llm.embedding_base_url is None:
- config.llm.embedding_base_url = config.llm.base_url
- if config.use_host_network and platform.system() == 'Darwin':
- logger.warning(
- 'Please upgrade to Docker Desktop 4.29.0 or later to use host network mode on macOS. '
- 'See https://github.com/docker/roadmap/issues/238#issuecomment-2044688144 for more information.'
- )
- # make sure cache dir exists
- if config.cache_dir:
- pathlib.Path(config.cache_dir).mkdir(parents=True, exist_ok=True)
- config = AppConfig()
- load_from_toml(config)
- load_from_env(config, os.environ)
- finalize_config(config)
- # Utility function for command line --group argument
- def get_llm_config_arg(llm_config_arg: str):
- """
- Get a group of llm settings from the config file.
- A group in config.toml can look like this:
- ```
- [gpt-3.5-for-eval]
- model = 'gpt-3.5-turbo'
- api_key = '...'
- temperature = 0.5
- num_retries = 10
- ...
- ```
- The user-defined group name, like "gpt-3.5-for-eval", is the argument to this function. The function will load the LLMConfig object
- with the settings of this group, from the config file, and set it as the LLMConfig object for the app.
- Args:
- llm_config_arg: The group of llm settings to get from the config.toml file.
- Returns:
- LLMConfig: The LLMConfig object with the settings from the config file.
- """
- # keep only the name, just in case
- llm_config_arg = llm_config_arg.strip('[]')
- logger.info(f'Loading llm config from {llm_config_arg}')
- # load the toml file
- try:
- with open('config.toml', 'r', encoding='utf-8') as toml_file:
- toml_config = toml.load(toml_file)
- except FileNotFoundError as e:
- logger.error(f'Config file not found: {e}')
- return None
- except toml.TomlDecodeError as e:
- logger.error(f'Cannot parse llm group from {llm_config_arg}. Exception: {e}')
- return None
- # update the llm config with the specified section
- if llm_config_arg in toml_config:
- return LLMConfig(**toml_config[llm_config_arg])
- logger.debug(f'Loading from toml failed for {llm_config_arg}')
- return None
- # Command line arguments
- def get_parser():
- """
- Get the parser for the command line arguments.
- """
- parser = argparse.ArgumentParser(description='Run an agent with a specific task')
- parser.add_argument(
- '-d',
- '--directory',
- type=str,
- help='The working directory for the agent',
- )
- parser.add_argument(
- '-t', '--task', type=str, default='', help='The task for the agent to perform'
- )
- parser.add_argument(
- '-f',
- '--file',
- type=str,
- help='Path to a file containing the task. Overrides -t if both are provided.',
- )
- parser.add_argument(
- '-c',
- '--agent-cls',
- default=config.agent.name,
- type=str,
- help='The agent class to use',
- )
- parser.add_argument(
- '-m',
- '--model-name',
- default=config.llm.model,
- type=str,
- help='The (litellm) model name to use',
- )
- parser.add_argument(
- '-i',
- '--max-iterations',
- default=config.max_iterations,
- type=int,
- help='The maximum number of iterations to run the agent',
- )
- parser.add_argument(
- '-b',
- '--max-budget-per-task',
- default=config.max_budget_per_task,
- type=float,
- help='The maximum budget allowed per task, beyond which the agent will stop.',
- )
- parser.add_argument(
- '-n',
- '--max-chars',
- default=config.llm.max_chars,
- type=int,
- help='The maximum number of characters to send to and receive from LLM per task',
- )
- # --eval configs are for evaluations only
- parser.add_argument(
- '--eval-output-dir',
- default='evaluation/evaluation_outputs/outputs',
- type=str,
- help='The directory to save evaluation output',
- )
- parser.add_argument(
- '--eval-n-limit',
- default=None,
- type=int,
- help='The number of instances to evaluate',
- )
- parser.add_argument(
- '--eval-num-workers',
- default=4,
- type=int,
- help='The number of workers to use for evaluation',
- )
- parser.add_argument(
- '--eval-note',
- default=None,
- type=str,
- help='The note to add to the evaluation directory',
- )
- parser.add_argument(
- '-l',
- '--llm-config',
- default=None,
- type=str,
- help='The group of llm settings, e.g. a [llama3] section in the toml file. Overrides model if both are provided.',
- )
- return parser
- def parse_arguments():
- """
- Parse the command line arguments.
- """
- parser = get_parser()
- args, _ = parser.parse_known_args()
- if args.directory:
- config.workspace_base = os.path.abspath(args.directory)
- print(f'Setting workspace base to {config.workspace_base}')
- return args
- args = parse_arguments()
|