| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415 |
- import asyncio
- import json
- import os
- import tempfile
- from typing import Any
- import pandas as pd
- import toml
- from datasets import load_dataset
- import agenthub
- from evaluation.swe_bench.prompt import CODEACT_SWE_PROMPT
- from evaluation.utils.shared import (
- EvalMetadata,
- EvalOutput,
- codeact_user_response,
- make_metadata,
- prepare_dataset,
- reset_logger_for_multiprocessing,
- run_evaluation,
- )
- from openhands.controller.state.state import State
- from openhands.core.config import (
- AppConfig,
- SandboxConfig,
- get_llm_config_arg,
- parse_arguments,
- )
- from openhands.core.logger import openhands_logger as logger
- from openhands.core.main import create_runtime, run_controller
- from openhands.events.action import CmdRunAction
- from openhands.events.observation import CmdOutputObservation, ErrorObservation
- from openhands.runtime.runtime import Runtime
- USE_HINT_TEXT = os.environ.get('USE_HINT_TEXT', 'false').lower() == 'true'
- USE_INSTANCE_IMAGE = os.environ.get('USE_INSTANCE_IMAGE', 'false').lower() == 'true'
- AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
- 'CodeActAgent': codeact_user_response,
- 'CodeActSWEAgent': codeact_user_response,
- }
- AGENT_CLS_TO_INST_SUFFIX = {
- 'CodeActAgent': 'When you think you have fixed the issue through code changes, please run the following command: <execute_bash> exit </execute_bash>.\n',
- 'CodeActSWEAgent': 'When you think you have fixed the issue through code changes, please run the following command: <execute_bash> exit </execute_bash>.\n',
- }
- def _get_swebench_workspace_dir_name(instance: pd.Series) -> str:
- return f'{instance.repo}__{instance.version}'.replace('/', '__')
- def get_instruction(instance: pd.Series, metadata: EvalMetadata):
- workspace_dir_name = _get_swebench_workspace_dir_name(instance)
- # Prepare instruction
- if metadata.agent_class == 'CodeActSWEAgent':
- instruction = (
- 'We are currently solving the following issue within our repository. Here is the issue text:\n'
- '--- BEGIN ISSUE ---\n'
- f'{instance.problem_statement}\n'
- '--- END ISSUE ---\n\n'
- )
- if USE_HINT_TEXT and instance.hints_text:
- instruction += (
- f'--- BEGIN HINTS ---\n{instance.hints_text}\n--- END HINTS ---\n'
- )
- instruction += CODEACT_SWE_PROMPT.format(workspace_dir_name=workspace_dir_name)
- else:
- # Testing general agents
- instruction = (
- f'Please fix the following issue for the repository in /workspace/{workspace_dir_name}.\n'
- 'Environment has been set up for you to start working. You may assume all necessary tools are installed.\n\n'
- '# Problem Statement\n'
- f'{instance.problem_statement}\n\n'
- )
- if USE_HINT_TEXT and instance.hints_text:
- instruction += f'# Hints\n{instance.hints_text}\n\n'
- instruction += (
- 'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n'
- 'You should NOT modify any existing test case files. If needed, you can add new test cases in a NEW file to reproduce the issue.\n'
- 'You SHOULD INCLUDE PROPER INDENTATION in your edit commands.\n'
- )
- # NOTE: You can actually set slightly different instruction for different agents
- instruction += AGENT_CLS_TO_INST_SUFFIX[metadata.agent_class]
- return instruction
- def get_config(
- instance: pd.Series,
- metadata: EvalMetadata,
- ) -> AppConfig:
- SWE_BENCH_CONTAINER_IMAGE = 'ghcr.io/opendevin/eval-swe-bench:full-v1.2.1'
- if USE_INSTANCE_IMAGE:
- # We use a different instance image for the each instance of swe-bench eval
- container_image = 'sweb.eval.x86_64.' + instance['instance_id']
- else:
- container_image = SWE_BENCH_CONTAINER_IMAGE
- config = AppConfig(
- default_agent=metadata.agent_class,
- run_as_openhands=False,
- runtime='eventstream',
- max_budget_per_task=4,
- max_iterations=metadata.max_iterations,
- sandbox=SandboxConfig(
- container_image=container_image,
- enable_auto_lint=True,
- use_host_network=False,
- # large enough timeout, since some testcases take very long to run
- timeout=300,
- ),
- # do not mount workspace
- workspace_base=None,
- workspace_mount_path=None,
- )
- config.set_llm_config(metadata.llm_config)
- return config
- async def initialize_runtime(
- runtime: Runtime,
- instance: pd.Series, # this argument is not required
- ):
- """Initialize the runtime for the agent.
- This function is called before the runtime is used to run the agent.
- """
- logger.info('-' * 30)
- logger.info('BEGIN Runtime Initialization Fn')
- logger.info('-' * 30)
- workspace_dir_name = _get_swebench_workspace_dir_name(instance)
- obs: CmdOutputObservation
- # Set instance id
- action = CmdRunAction(
- command=f"""echo 'export SWE_INSTANCE_ID={instance['instance_id']}' >> ~/.bashrc && echo 'export PIP_CACHE_DIR=~/.cache/pip' >> ~/.bashrc && echo "alias git='git --no-pager'" >> ~/.bashrc"""
- )
- logger.info(action, extra={'msg_type': 'ACTION'})
- obs = await runtime.run_action(action)
- logger.info(obs, extra={'msg_type': 'OBSERVATION'})
- assert obs.exit_code == 0
- if USE_INSTANCE_IMAGE:
- # inject the init script
- script_dir = os.path.dirname(__file__)
- # inject the instance info
- action = CmdRunAction(command='mkdir -p /swe_util/eval_data/instances')
- logger.info(action, extra={'msg_type': 'ACTION'})
- obs = await runtime.run_action(action)
- logger.info(obs, extra={'msg_type': 'OBSERVATION'})
- assert (
- obs.exit_code == 0
- ), f'Failed to create /swe_util/eval_data/instances: {obs.content}'
- swe_instance_json_name = 'swe-bench-instance.json'
- with tempfile.TemporaryDirectory() as temp_dir:
- # Construct the full path for the desired file name within the temporary directory
- temp_file_path = os.path.join(temp_dir, swe_instance_json_name)
- # Write to the file with the desired name within the temporary directory
- with open(temp_file_path, 'w') as f:
- if not isinstance(instance, dict):
- json.dump([instance.to_dict()], f)
- else:
- json.dump([instance], f)
- # Copy the file to the desired location
- await runtime.copy_to(temp_file_path, '/swe_util/eval_data/instances/')
- # inject the instance swe entry
- await runtime.copy_to(
- str(os.path.join(script_dir, 'scripts/setup/instance_swe_entry.sh')),
- '/swe_util/',
- )
- action = CmdRunAction(command='cat ~/.bashrc')
- logger.info(action, extra={'msg_type': 'ACTION'})
- obs = await runtime.run_action(action)
- logger.info(obs, extra={'msg_type': 'OBSERVATION'})
- assert obs.exit_code == 0
- action = CmdRunAction(command='source ~/.bashrc')
- logger.info(action, extra={'msg_type': 'ACTION'})
- obs = await runtime.run_action(action)
- logger.info(obs, extra={'msg_type': 'OBSERVATION'})
- assert obs.exit_code == 0
- action = CmdRunAction(command='source /swe_util/instance_swe_entry.sh')
- logger.info(action, extra={'msg_type': 'ACTION'})
- obs = await runtime.run_action(action)
- logger.info(obs, extra={'msg_type': 'OBSERVATION'})
- assert obs.exit_code == 0
- else:
- action = CmdRunAction(command='source /swe_util/swe_entry.sh')
- logger.info(action, extra={'msg_type': 'ACTION'})
- obs = await runtime.run_action(action)
- logger.info(obs, extra={'msg_type': 'OBSERVATION'})
- assert (
- obs.exit_code == 0
- ), f'Failed to source /swe_util/swe_entry.sh: {obs.content}'
- action = CmdRunAction(command=f'cd /workspace/{workspace_dir_name}')
- logger.info(action, extra={'msg_type': 'ACTION'})
- obs = await runtime.run_action(action)
- logger.info(obs, extra={'msg_type': 'OBSERVATION'})
- assert obs.exit_code == 0
- action = CmdRunAction(command='git reset --hard')
- logger.info(action, extra={'msg_type': 'ACTION'})
- obs = await runtime.run_action(action)
- logger.info(obs, extra={'msg_type': 'OBSERVATION'})
- assert obs.exit_code == 0
- action = CmdRunAction(
- command='for remote_name in $(git remote); do git remote remove "${remote_name}"; done'
- )
- logger.info(action, extra={'msg_type': 'ACTION'})
- obs = await runtime.run_action(action)
- logger.info(obs, extra={'msg_type': 'OBSERVATION'})
- assert obs.exit_code == 0
- logger.info('-' * 30)
- logger.info('END Runtime Initialization Fn')
- logger.info('-' * 30)
- async def complete_runtime(
- runtime: Runtime,
- instance: pd.Series, # this argument is not required, but it is used to get the workspace_dir_name
- ) -> dict[str, Any]:
- """Complete the runtime for the agent.
- This function is called before the runtime is used to run the agent.
- If you need to do something in the sandbox to get the correctness metric after
- the agent has run, modify this function.
- """
- logger.info('-' * 30)
- logger.info('BEGIN Runtime Completion Fn')
- logger.info('-' * 30)
- obs: CmdOutputObservation
- workspace_dir_name = _get_swebench_workspace_dir_name(instance)
- action = CmdRunAction(command=f'cd /workspace/{workspace_dir_name}')
- logger.info(action, extra={'msg_type': 'ACTION'})
- obs = await runtime.run_action(action)
- logger.info(obs, extra={'msg_type': 'OBSERVATION'})
- assert obs.exit_code == 0
- action = CmdRunAction(command='git config --global core.pager ""')
- logger.info(action, extra={'msg_type': 'ACTION'})
- obs = await runtime.run_action(action)
- logger.info(obs, extra={'msg_type': 'OBSERVATION'})
- assert obs.exit_code == 0
- action = CmdRunAction(command='git add -A')
- logger.info(action, extra={'msg_type': 'ACTION'})
- obs = await runtime.run_action(action)
- logger.info(obs, extra={'msg_type': 'OBSERVATION'})
- assert obs.exit_code == 0
- n_retries = 0
- git_patch = None
- while n_retries < 5:
- action = CmdRunAction(
- command=f'git diff --no-color --cached {instance["base_commit"]}',
- keep_prompt=False,
- )
- action.timeout = 600 + 100 * n_retries
- logger.info(action, extra={'msg_type': 'ACTION'})
- obs = await runtime.run_action(action)
- logger.info(obs, extra={'msg_type': 'OBSERVATION'})
- n_retries += 1
- if isinstance(obs, CmdOutputObservation):
- if obs.exit_code == 0:
- git_patch = obs.content.strip()
- break
- else:
- logger.info('Failed to get git diff, retrying...')
- await asyncio.sleep(10)
- elif isinstance(obs, ErrorObservation):
- logger.error(f'Error occurred: {obs.content}. Retrying...')
- await asyncio.sleep(10)
- else:
- raise ValueError(f'Unexpected observation type: {type(obs)}')
- logger.info('-' * 30)
- logger.info('END Runtime Completion Fn')
- logger.info('-' * 30)
- return {'git_patch': git_patch}
- async def process_instance(
- instance: pd.Series,
- metadata: EvalMetadata,
- reset_logger: bool = True,
- ) -> EvalOutput:
- config = get_config(instance, metadata)
- # Setup the logger properly, so you can run multi-processing to parallelize the evaluation
- if reset_logger:
- log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
- reset_logger_for_multiprocessing(logger, instance.instance_id, log_dir)
- else:
- logger.info(f'Starting evaluation for instance {instance.instance_id}.')
- runtime = await create_runtime(config, sid=instance.instance_id)
- await initialize_runtime(runtime, instance)
- instruction = get_instruction(instance, metadata)
- # Here's how you can run the agent (similar to the `main` function) and get the final task state
- state: State | None = await run_controller(
- config=config,
- task_str=instruction,
- runtime=runtime,
- fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN[metadata.agent_class],
- )
- # ======= THIS IS SWE-Bench specific =======
- # Get git patch
- return_val = await complete_runtime(runtime, instance)
- git_patch = return_val['git_patch']
- logger.info(
- f'Got git diff for instance {instance.instance_id}:\n--------\n{git_patch}\n--------'
- )
- # ==========================================
- # ======= Attempt to evaluate the agent's edits =======
- # we use eval_infer.sh to evaluate the agent's edits, not here
- # because the agent may alter the environment / testcases
- test_result = {
- 'git_patch': git_patch,
- }
- # If you are working on some simpler benchmark that only evaluates the final model output (e.g., in a MessageAction)
- # You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation.
- if state is None:
- raise ValueError('State should not be None.')
- # history is now available as a stream of events, rather than list of pairs of (Action, Observation)
- # for compatibility with the existing output format, we can remake the pairs here
- # remove when it becomes unnecessary
- histories = state.history.compatibility_for_eval_history_pairs()
- metrics = state.metrics.get() if state.metrics else None
- # Save the output
- output = EvalOutput(
- instance_id=instance.instance_id,
- instruction=instruction,
- instance=instance.to_dict(), # SWE Bench specific
- test_result=test_result,
- metadata=metadata,
- history=histories,
- metrics=metrics,
- error=state.last_error if state and state.last_error else None,
- )
- return output
- def filter_dataset(dataset: pd.DataFrame, filter_column: str) -> pd.DataFrame:
- file_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'config.toml')
- if os.path.exists(file_path):
- with open(file_path, 'r') as file:
- data = toml.load(file)
- if 'selected_ids' in data:
- selected_ids = data['selected_ids']
- logger.info(
- f'Filtering {len(selected_ids)} tasks from "selected_ids"...'
- )
- subset = dataset[dataset[filter_column].isin(selected_ids)]
- logger.info(f'Retained {subset.shape[0]} tasks after filtering')
- return subset
- return dataset
- if __name__ == '__main__':
- args = parse_arguments()
- # NOTE: It is preferable to load datasets from huggingface datasets and perform post-processing
- # so we don't need to manage file uploading to OpenHands's repo
- dataset = load_dataset('princeton-nlp/SWE-bench_Lite')
- swe_bench_tests = filter_dataset(dataset['test'].to_pandas(), 'instance_id')
- llm_config = None
- if args.llm_config:
- llm_config = get_llm_config_arg(args.llm_config)
- if llm_config is None:
- raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
- details = {}
- _agent_cls = agenthub.Agent.get_cls(args.agent_cls)
- if hasattr(_agent_cls, 'system_message'):
- details['system_message'] = _agent_cls.system_message
- if hasattr(_agent_cls, 'in_context_example'):
- details['in_context_example'] = _agent_cls.in_context_example
- metadata = make_metadata(
- llm_config,
- 'swe-bench-lite',
- args.agent_cls,
- args.max_iterations,
- args.eval_note,
- args.eval_output_dir,
- details=details,
- )
- output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
- instances = prepare_dataset(swe_bench_tests, output_file, args.eval_n_limit)
- asyncio.run(
- run_evaluation(
- instances, metadata, output_file, args.eval_num_workers, process_instance
- )
- )
|