| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327 |
- import asyncio
- import os
- import re
- import tempfile
- from typing import Any
- import pandas as pd
- from datasets import load_dataset
- from evaluation.benchmarks.agent_bench.helper import (
- FAKE_RESPONSES,
- INST_SUFFIXES,
- compare_results,
- create_sh_file,
- )
- from evaluation.utils.shared import (
- EvalMetadata,
- EvalOutput,
- compatibility_for_eval_history_pairs,
- make_metadata,
- prepare_dataset,
- reset_logger_for_multiprocessing,
- run_evaluation,
- )
- from openhands.controller.state.state import State
- from openhands.core.config import (
- AppConfig,
- SandboxConfig,
- get_llm_config_arg,
- parse_arguments,
- )
- from openhands.core.logger import openhands_logger as logger
- from openhands.core.main import create_runtime, run_controller
- from openhands.events.action import AgentFinishAction, CmdRunAction, MessageAction
- from openhands.events.observation import CmdOutputObservation
- from openhands.runtime.base import Runtime
- from openhands.utils.async_utils import call_async_from_sync
- def get_config(
- metadata: EvalMetadata,
- ) -> AppConfig:
- config = AppConfig(
- default_agent=metadata.agent_class,
- run_as_openhands=False,
- runtime=os.environ.get('RUNTIME', 'eventstream'),
- max_iterations=metadata.max_iterations,
- sandbox=SandboxConfig(
- base_container_image='python:3.12-slim',
- enable_auto_lint=True,
- use_host_network=False,
- api_key=os.environ.get('ALLHANDS_API_KEY', None),
- remote_runtime_api_url=os.environ.get('SANDBOX_REMOTE_RUNTIME_API_URL'),
- keep_runtime_alive=False,
- remote_runtime_init_timeout=3600,
- ),
- # do not mount workspace
- workspace_base=None,
- workspace_mount_path=None,
- )
- config.set_llm_config(metadata.llm_config)
- return config
- def initialize_runtime(
- runtime: Runtime,
- instance: pd.Series, # this argument is not required
- ):
- """Initialize the runtime for the agent.
- This function is called before the runtime is used to run the agent.
- """
- logger.info(f"{'-' * 50} BEGIN Runtime Initialization Fn {'-' * 50}")
- obs: CmdOutputObservation
- # Set instance id
- action = CmdRunAction(command='mkdir -p /workspace')
- logger.info(action, extra={'msg_type': 'ACTION'})
- obs = runtime.run_action(action)
- assert obs.exit_code == 0
- action = CmdRunAction(command='cd /workspace')
- logger.info(action, extra={'msg_type': 'ACTION'})
- obs = runtime.run_action(action)
- assert obs.exit_code == 0
- init_cmd = instance.init
- if init_cmd is not None:
- script_name = f'{instance.instance_id}_init.sh'
- with tempfile.TemporaryDirectory() as tmpdir:
- host_script_path = os.path.join(tmpdir, script_name)
- create_sh_file(host_script_path, init_cmd)
- runtime.copy_to(
- host_script_path,
- '/workspace',
- )
- logger.info(f'Running init script: {script_name}')
- action = CmdRunAction(command=f'chmod +x ./{script_name} && ./{script_name}')
- logger.info(action, extra={'msg_type': 'ACTION'})
- obs = runtime.run_action(action)
- logger.info(obs, extra={'msg_type': 'OBSERVATION'})
- assert obs.exit_code == 0
- logger.info(f"{'-' * 50} END Runtime Initialization Fn {'-' * 50}")
- def complete_runtime(
- runtime: Runtime,
- instance: pd.Series, # this argument is not required, but it is used to get the workspace_dir_name
- ) -> dict[str, Any]:
- """Complete the runtime for the agent.
- This function is called before the runtime is used to run the agent.
- If you need to do something in the sandbox to get the correctness metric after
- the agent has run, modify this function.
- """
- logger.info(f"{'-' * 50} BEGIN Runtime Completion Fn {'-' * 50}")
- obs: CmdOutputObservation
- agent_answer = None
- get_agent_result_cmd = instance.get_agent_result
- if get_agent_result_cmd is not None:
- script_name = 'get_agent_result.sh'
- with tempfile.TemporaryDirectory() as tmpdir:
- host_script_path = os.path.join(tmpdir, script_name)
- create_sh_file(host_script_path, get_agent_result_cmd)
- runtime.copy_to(
- host_script_path,
- '/workspace',
- )
- logger.info(f'Running get agent result cmd: {script_name}')
- action = CmdRunAction(
- command=f'chmod +x ./{script_name} && ./{script_name}',
- keep_prompt=False,
- )
- logger.info(action, extra={'msg_type': 'ACTION'})
- obs = runtime.run_action(action)
- logger.info(obs, extra={'msg_type': 'OBSERVATION'})
- assert obs.exit_code == 0
- agent_answer = obs.content
- # IF the agent answer is not found, retrieve it from the history
- # We wait until the controller finishes
- final_ans = None
- if instance.ground_truth is not None:
- final_ans = instance.ground_truth
- else:
- get_ground_truth_cmd = instance.get_ground_truth
- if get_ground_truth_cmd is not None:
- script_name = 'get_ground_truth.sh'
- with tempfile.TemporaryDirectory() as tmpdir:
- host_script_path = os.path.join(tmpdir, script_name)
- create_sh_file(host_script_path, get_ground_truth_cmd)
- runtime.copy_to(
- host_script_path,
- '/workspace',
- )
- logger.info(f'Running get ground truth cmd: {script_name}')
- action = CmdRunAction(
- command=f'chmod +x ./{script_name} && ./{script_name}',
- keep_prompt=False,
- )
- logger.info(action, extra={'msg_type': 'ACTION'})
- obs = runtime.run_action(action)
- logger.info(obs, extra={'msg_type': 'OBSERVATION'})
- final_ans = obs.content
- logger.info(f"{'-' * 50} END Runtime Completion Fn {'-' * 50}")
- return {
- 'final_ans': final_ans,
- 'agent_answer': agent_answer,
- }
- def process_instance(
- instance: pd.Series,
- metadata: EvalMetadata,
- reset_logger: bool = True,
- ) -> EvalOutput:
- config = get_config(metadata)
- # Setup the logger properly, so you can run multi-processing to parallelize the evaluation
- if reset_logger:
- log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
- reset_logger_for_multiprocessing(logger, instance.instance_id, log_dir)
- else:
- logger.info(f'Starting evaluation for instance {instance.instance_id}.')
- # =============================================
- # build instruction
- # =============================================
- # Prepare instruction
- instruction = (
- f'Please fix the following issue.\n'
- 'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n'
- 'Please encapsulate your final answer (answer ONLY) within <solution> and </solution>.\n'
- 'For example: The answer to the question is <solution> 42 </solution>.\n'
- '# Problem \n'
- f'{instance.description}\n\n'
- )
- instruction += (
- 'IMPORTANT: You should ONLY interact with the environment provided '
- 'to you AND NEVER ASK FOR HUMAN HELP.\n'
- )
- # NOTE: You can actually set slightly different instruction for different agents
- instruction += INST_SUFFIXES[metadata.agent_class]
- # =============================================
- # create sandbox and run the agent
- # =============================================
- runtime: Runtime = create_runtime(config)
- call_async_from_sync(runtime.connect)
- initialize_runtime(runtime, instance=instance)
- # Here's how you can run the agent (similar to the `main` function) and get the final task state
- state: State | None = asyncio.run(
- run_controller(
- config=config,
- initial_user_action=MessageAction(content=instruction),
- runtime=runtime,
- fake_user_response_fn=FAKE_RESPONSES[metadata.agent_class],
- )
- )
- if state is None:
- raise ValueError('State should not be None.')
- # =============================================
- # result evaluation
- # =============================================
- return_val = complete_runtime(runtime, instance)
- agent_answer = return_val['agent_answer']
- final_ans = return_val['final_ans']
- # If the agent answer is not found, retrieve it from the history
- if agent_answer is None:
- agent_answer = ''
- logger.info('Retrieving agent answer from history.')
- raw_ans = ''
- # retrieve the last agent message or thought
- for event in reversed(state.history):
- if event.source == 'agent':
- if isinstance(event, AgentFinishAction):
- raw_ans = event.thought
- break
- elif isinstance(event, MessageAction):
- raw_ans = event.content
- break
- elif isinstance(event, CmdRunAction):
- raw_ans = event.thought
- break
- # parse the answer for a solution tag
- agent_answer = re.findall(r'<solution>(.*?)</solution>', raw_ans, re.DOTALL)
- if len(agent_answer) == 0:
- logger.warning(f'Failed to parse model answer: {raw_ans}')
- agent_answer = raw_ans
- else:
- agent_answer = agent_answer[0]
- comparison_method = instance.comparison_method
- logger.info(
- f'Final message: {agent_answer} | Ground truth: {final_ans} | Comparison method: {comparison_method}'
- )
- test_result = compare_results(comparison_method, agent_answer, final_ans)
- # history is now available as a stream of events, rather than list of pairs of (Action, Observation)
- # for compatibility with the existing output format, we can remake the pairs here
- # remove when it becomes unnecessary
- histories = compatibility_for_eval_history_pairs(state.history)
- metrics = state.metrics.get() if state.metrics else None
- # Save the output
- output = EvalOutput(
- instance_id=instance.instance_id,
- instance=instance.to_dict(),
- instruction=instruction,
- metadata=metadata,
- history=histories,
- metrics=metrics,
- error=state.last_error if state and state.last_error else None,
- test_result={
- 'agent_answer': agent_answer,
- 'final_answer': final_ans,
- 'check_method': comparison_method,
- 'result': test_result,
- },
- )
- return output
- if __name__ == '__main__':
- args = parse_arguments()
- dataset = load_dataset('iFurySt/AgentBench')
- agent_bench_tests = dataset['osbench'].to_pandas()
- llm_config = None
- if args.llm_config:
- llm_config = get_llm_config_arg(args.llm_config)
- if llm_config is None:
- raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
- metadata = make_metadata(
- llm_config,
- 'AgentBench-OS',
- args.agent_cls,
- args.max_iterations,
- args.eval_note,
- args.eval_output_dir,
- )
- output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
- instances = prepare_dataset(agent_bench_tests, output_file, args.eval_n_limit)
- run_evaluation(
- instances, metadata, output_file, args.eval_num_workers, process_instance
- )
|