| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348 |
- import asyncio
- import functools
- import json
- import os
- import tempfile
- from typing import Any
- import pandas as pd
- from datasets import load_dataset
- from evaluation.benchmarks.biocoder.utils import BiocoderData
- from evaluation.utils.shared import (
- EvalMetadata,
- EvalOutput,
- codeact_user_response,
- compatibility_for_eval_history_pairs,
- make_metadata,
- prepare_dataset,
- reset_logger_for_multiprocessing,
- run_evaluation,
- )
- from openhands.controller.state.state import State
- from openhands.core.config import (
- AppConfig,
- SandboxConfig,
- get_llm_config_arg,
- parse_arguments,
- )
- from openhands.core.logger import openhands_logger as logger
- from openhands.core.main import create_runtime, run_controller
- from openhands.events.action import CmdRunAction, MessageAction
- from openhands.events.observation import CmdOutputObservation
- from openhands.runtime.base import Runtime
- from openhands.utils.async_utils import call_async_from_sync
- AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
- 'CodeActAgent': functools.partial(
- codeact_user_response, encapsulate_solution=True, try_parse=None
- ),
- }
- AGENT_CLS_TO_INST_SUFFIX = {
- 'CodeActAgent': 'When you think you have fixed the issue through code changes, please finish the interaction using the "finish" tool.\n'
- }
- FILE_EXT_MAP = {
- 'python': 'py',
- 'java': 'java',
- 'c': 'c',
- 'cpp': 'cpp',
- 'javascript': 'js',
- 'typescript': 'ts',
- }
- def get_config(
- metadata: EvalMetadata,
- ) -> AppConfig:
- BIOCODER_BENCH_CONTAINER_IMAGE = 'public.ecr.aws/i5g0m1f6/eval_biocoder:v1.0'
- config = AppConfig(
- default_agent=metadata.agent_class,
- run_as_openhands=False,
- runtime='eventstream',
- max_iterations=metadata.max_iterations,
- sandbox=SandboxConfig(
- base_container_image=BIOCODER_BENCH_CONTAINER_IMAGE,
- enable_auto_lint=True,
- use_host_network=False,
- ),
- # do not mount workspace
- workspace_base=None,
- workspace_mount_path=None,
- )
- config.set_llm_config(metadata.llm_config)
- return config
- def initialize_runtime(
- runtime: Runtime,
- instance: BiocoderData, # this argument is not required
- ):
- """Initialize the runtime for the agent.
- This function is called before the runtime is used to run the agent.
- """
- logger.info(f"{'-' * 50} BEGIN Runtime Initialization Fn {'-' * 50}")
- obs: CmdOutputObservation
- file_ext = FILE_EXT_MAP[instance.language.lower()]
- action = CmdRunAction(command='mkdir -p /workspace && mkdir -p /testing_files')
- logger.info(action, extra={'msg_type': 'ACTION'})
- obs = runtime.run_action(action)
- assert obs.exit_code == 0
- with tempfile.TemporaryDirectory() as tmpdir:
- context_path = os.path.join(tmpdir, 'context.' + file_ext)
- with open(context_path, 'w') as f:
- f.write(instance.contextCode)
- runtime.copy_to(context_path, '/testing_files')
- golden_path = os.path.join(tmpdir, 'golden.' + file_ext)
- with open(golden_path, 'w') as f:
- f.write(instance.goldenCode)
- runtime.copy_to(golden_path, '/testing_files')
- testcase_json = {
- 'test_case_id': instance.test_case_id,
- 'num_cases': 1000,
- 'language': instance.language.lower(),
- }
- testcase_path = os.path.join(tmpdir, 'testcase_biocoder.json')
- with open(testcase_path, 'w') as f:
- f.write(json.dumps(testcase_json, indent=4))
- runtime.copy_to(testcase_path, '/testing_files')
- # setup paths
- remove_code_script = os.path.join(
- os.path.dirname(__file__), 'scripts', 'setup', 'remove_code.py'
- )
- runtime.copy_to(remove_code_script, '/testing_files')
- action = CmdRunAction(command='cd /workspace')
- logger.info(action, extra={'msg_type': 'ACTION'})
- obs = runtime.run_action(action)
- assert obs.exit_code == 0
- # download repository archive
- repository_url = f"https://biocoder.lilbillbiscuit.com/repos/{instance.repository.split('/')[1]}.zip"
- action = CmdRunAction(command='wget -O repo.zip ' + repository_url)
- logger.info(action, extra={'msg_type': 'ACTION'})
- obs = runtime.run_action(action)
- assert obs.exit_code == 0, f'Failed to download the repository: {obs.content}'
- # unzip the repository
- action = CmdRunAction(command='unzip -o -q repo.zip && rm repo.zip')
- logger.info(action, extra={'msg_type': 'ACTION'})
- obs = runtime.run_action(action)
- assert obs.exit_code == 0, f'Failed to unzip the repository: {obs.content}'
- # chmod 777
- action = CmdRunAction(command='chmod -R 777 /workspace')
- logger.info(action, extra={'msg_type': 'ACTION'})
- obs = runtime.run_action(action)
- assert obs.exit_code == 0, f'Failed to chmod the files: {obs.content}'
- # remove code for evaluation instance
- target_filepath = os.path.join(
- '/workspace', instance.repository.split('/')[1], instance.filePath
- )
- line_start = instance.lineStart
- line_end = instance.lineEnd
- language = instance.language.lower()
- action = CmdRunAction(
- command=f'python3 /testing_files/remove_code.py --target_filepath {target_filepath} --line_start {line_start} --line_end {line_end} --language {language}'
- )
- logger.info(action, extra={'msg_type': 'ACTION'})
- obs = runtime.run_action(action)
- assert obs.exit_code == 0, f'Failed to remove the code: {obs.content}'
- logger.info(f"{'-' * 50} END Runtime Initialization Fn {'-' * 50}")
- def complete_runtime(
- runtime: Runtime,
- instance: pd.Series, # this argument is not required, but it is used to get the workspace_dir_name
- ) -> dict[str, Any]:
- """Complete the runtime for the agent.
- This function is called before the runtime is used to run the agent.
- If you need to do something in the sandbox to get the correctness metric after
- the agent has run, modify this function.
- """
- logger.info(f"{'-' * 50} BEGIN Runtime Completion Fn {'-' * 50}")
- obs: CmdOutputObservation
- test_result = {'result': {}, 'metadata': {}}
- copy_changed_code_script = os.path.join(
- os.path.dirname(__file__), 'scripts', 'setup', 'copy_changed_code.py'
- )
- runtime.copy_to(copy_changed_code_script, '/testing_files')
- file_ext = FILE_EXT_MAP[instance.language.lower()]
- target_filepath = os.path.join(
- '/workspace', instance.repository.split('/')[1], instance.filePath
- )
- generated_path = os.path.join('/testing_files', 'generated.' + file_ext)
- action = CmdRunAction(
- command=f'python3 /testing_files/copy_changed_code.py --target_filepath {target_filepath} --generated_code_filepath {generated_path} --line_start {instance.lineStart} --include_signature'
- )
- logger.info(action, extra={'msg_type': 'ACTION'})
- obs = runtime.run_action(action)
- if obs.exit_code == 0:
- test_result['metadata']['1_copy_change_success'] = True
- action = CmdRunAction(command=f'cat {generated_path}', keep_prompt=False)
- logger.info(action, extra={'msg_type': 'ACTION'})
- obs = runtime.run_action(action)
- assert obs.exit_code == 0
- code = obs.content
- test_result['metadata']['1_copy_change_code'] = code
- else:
- test_result['metadata']['1_copy_change_success'] = False
- test_result['metadata']['1_copy_change_code'] = None
- action = CmdRunAction(command='cd /testing_files')
- logger.info(action, extra={'msg_type': 'ACTION'})
- obs = runtime.run_action(action)
- assert obs.exit_code == 0
- action = CmdRunAction(
- command='/home/openhands/mambaforge/bin/mamba run -n test python3 /testing/start_test_openhands.py'
- )
- logger.info(action, extra={'msg_type': 'ACTION'})
- obs = runtime.run_action(action)
- logger.info(obs, extra={'msg_type': 'OBSERVATION'})
- assert obs.exit_code == 0
- action = CmdRunAction(
- command='cat /testing_files/results_biocoder.json', keep_prompt=False
- )
- logger.info(action, extra={'msg_type': 'ACTION'})
- obs = runtime.run_action(action)
- if obs.exit_code == 0:
- test_result['metadata']['2_run_test_success'] = True
- test_result['metadata']['2_run_test_result'] = str(obs.content)
- json_obj = json.loads(obs.content)
- test_result['result'] = json_obj['result']
- else:
- test_result['metadata']['2_run_test_success'] = False
- test_result['metadata']['2_run_test_result'] = str(obs.content)
- logger.info(f"{'-' * 50} END Runtime Completion Fn {'-' * 50}")
- return test_result
- def process_instance(
- instance: pd.Series,
- metadata: EvalMetadata,
- reset_logger: bool = True,
- ) -> EvalOutput:
- config = get_config(metadata)
- instance = BiocoderData(**instance)
- print(instance)
- instance_id = f'{instance.repository}__{instance.instance_id[:10]}'
- # Setup the logger properly, so you can run multi-processing to parallelize the evaluation
- if reset_logger:
- log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
- reset_logger_for_multiprocessing(logger, instance_id, log_dir)
- else:
- logger.info(f'Starting evaluation for instance {instance_id}.')
- # Prepare instruction
- instruction = (
- f'Please complete the function "{instance.signature}" in the file /workspace/{instance.repository.split("/")[1]}/{instance.filePath}.\n'
- f'The environment has been set up for you to start working. You may assume all necessary tools are installed.\n'
- f'To complete the task, you must directly modify the file and fill in the function, keeping in mind that the function signature is on line {instance.lineStart-1}\n\n'
- f'The function should do the following:\n'
- f'{instance.promptSummaryOnly}\n\n'
- )
- instruction += (
- 'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n'
- 'You should NOT modify any other files other than the file intended. This means that you should NOT write any test cases.\n'
- 'You may need context from other files in the repository to complete this task.'
- 'Do NOT add any import statements or change anything else other than the writing the function body.\n'
- 'You do not need to run the code to check if it works. \n'
- 'Make sure to include proper formatting in Java and Python, including correct braces and/or indentation.\n'
- )
- # NOTE: You can actually set slightly different instruction for different agents
- instruction += AGENT_CLS_TO_INST_SUFFIX[metadata.agent_class]
- runtime = create_runtime(config)
- call_async_from_sync(runtime.connect)
- initialize_runtime(runtime, instance)
- # Here's how you can run the agent (similar to the `main` function) and get the final task state
- state: State | None = asyncio.run(
- run_controller(
- config=config,
- initial_user_action=MessageAction(content=instruction),
- runtime=runtime,
- fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN[
- metadata.agent_class
- ],
- )
- )
- if state is None:
- raise ValueError('State should not be None.')
- test_result = complete_runtime(runtime, instance)
- metrics = state.metrics.get() if state.metrics else None
- # history is now available as a stream of events, rather than list of pairs of (Action, Observation)
- # for compatibility with the existing output format, we can remake the pairs here
- # remove when it becomes unnecessary
- histories = compatibility_for_eval_history_pairs(state.history)
- test_result['generated'] = test_result['metadata']['1_copy_change_code']
- # Save the output
- output = EvalOutput(
- instance_id=instance.instance_id,
- instance=instance.to_dict(),
- instruction=instruction,
- metadata=metadata,
- history=histories,
- metrics=metrics,
- error=state.last_error if state and state.last_error else None,
- test_result=test_result,
- )
- return output
- if __name__ == '__main__':
- args = parse_arguments()
- dataset = load_dataset('lilbillbiscuit/biocoder_public')
- biocoder_tests = dataset['train'].to_pandas()
- biocoder_tests['instance_id'] = biocoder_tests['test_case_id']
- llm_config = None
- if args.llm_config:
- llm_config = get_llm_config_arg(args.llm_config)
- if llm_config is None:
- raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
- metadata = make_metadata(
- llm_config,
- 'biocoder',
- args.agent_cls,
- args.max_iterations,
- args.eval_note,
- args.eval_output_dir,
- )
- output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
- instances = prepare_dataset(biocoder_tests, output_file, args.eval_n_limit)
- run_evaluation(
- instances, metadata, output_file, args.eval_num_workers, process_instance
- )
|