| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171 |
- import asyncio
- import os
- import re
- import nltk
- import pandas as pd
- from datasets import load_dataset
- from evaluation.utils.shared import (
- EvalMetadata,
- EvalOutput,
- compatibility_for_eval_history_pairs,
- make_metadata,
- prepare_dataset,
- reset_logger_for_multiprocessing,
- run_evaluation,
- )
- from openhands.controller.state.state import State
- from openhands.core.config import (
- AppConfig,
- SandboxConfig,
- get_llm_config_arg,
- parse_arguments,
- )
- from openhands.core.logger import openhands_logger as logger
- from openhands.core.main import create_runtime, run_controller
- from openhands.events.action import MessageAction
- # Only CodeActAgent can delegate to BrowsingAgent
- SUPPORTED_AGENT_CLS = {'CodeActAgent'}
- def get_config(
- metadata: EvalMetadata,
- ) -> AppConfig:
- assert (
- metadata.max_iterations == 1
- ), 'max_iterations must be 1 for browsing delegation evaluation.'
- config = AppConfig(
- default_agent=metadata.agent_class,
- run_as_openhands=False,
- runtime='eventstream',
- max_iterations=metadata.max_iterations,
- sandbox=SandboxConfig(
- base_container_image='python:3.12-bookworm',
- enable_auto_lint=False,
- use_host_network=False,
- ),
- workspace_base=None,
- workspace_mount_path=None,
- )
- config.set_llm_config(metadata.llm_config)
- return config
- def process_instance(
- instance: pd.Series,
- metadata: EvalMetadata,
- reset_logger: bool = True,
- ) -> EvalOutput:
- config = get_config(metadata)
- # Setup the logger properly, so you can run multi-processing to parallelize the evaluation
- if reset_logger:
- log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
- reset_logger_for_multiprocessing(logger, instance.instance_id, log_dir)
- else:
- logger.info(f'Starting evaluation for instance {instance.instance_id}.')
- instruction = (
- f'You can delegate browsing tasks to a browser agent. '
- f"For example, for query 'Who is the president of the United States?', you can delegate the task to a browser agent via <execute_browse> Who is the president of the United States? </execute_browse>.\n"
- f'Now, solve the following query: "{instance.instruction}"\n'
- f'NOTE: You should copy the "query" as is into the <execute_browse> tag. DO NOT change ANYTHING in the query.'
- )
- runtime = create_runtime(config)
- state: State | None = asyncio.run(
- run_controller(
- config=config,
- initial_user_action=MessageAction(content=instruction),
- runtime=runtime,
- )
- )
- if state is None:
- raise ValueError('State should not be None.')
- metrics = state.metrics.get() if state.metrics else None
- # history is now available as a stream of events, rather than list of pairs of (Action, Observation)
- # for compatibility with the existing output format, we can remake the pairs here
- # remove when it becomes unnecessary
- histories = compatibility_for_eval_history_pairs(state.history)
- # find the last delegate action
- last_delegate_action = None
- result = {}
- for action, _ in histories:
- if action['action'] == 'delegate':
- last_delegate_action = action
- instruction_for_delegate = action['args']['inputs']['task']
- # parse `browse_actions` from `instruction_for_delegate`
- # task = f'{thought}. I should start with: {browse_actions}'
- instruction_for_delegate = re.search(
- r'I should start with: (.*)', instruction_for_delegate
- ).group(1)
- # calculate the edit distance between the instance.instruction and the instruction_for_delegate
- edit_distance = nltk.edit_distance(
- instance.instruction, instruction_for_delegate
- )
- is_exact_match = (
- instance.instruction.strip() == instruction_for_delegate.strip()
- )
- result['edit_distance'] = edit_distance
- result['is_exact_match'] = is_exact_match
- # Save the output
- output = EvalOutput(
- instance_id=instance.instance_id,
- instruction=instruction,
- metadata=metadata,
- history=histories,
- metrics=metrics,
- error=state.last_error if state and state.last_error else None,
- test_result={
- 'query': instance.instruction,
- 'action': last_delegate_action,
- 'result': result,
- },
- )
- return output
- if __name__ == '__main__':
- args = parse_arguments()
- dataset = load_dataset('OpenHands/eval-browsing-instructions')
- dataset = dataset['train'].to_pandas()
- assert dataset.columns.tolist() == ['instance_id', 'instruction']
- llm_config = None
- if args.llm_config:
- llm_config = get_llm_config_arg(args.llm_config)
- if llm_config is None:
- raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
- metadata = make_metadata(
- llm_config,
- 'browsing_delegation',
- args.agent_cls,
- args.max_iterations,
- args.eval_note,
- args.eval_output_dir,
- )
- if metadata.agent_class not in SUPPORTED_AGENT_CLS:
- raise ValueError(
- f'Agent class {metadata.agent_class} not supported with AgentDelegation.'
- )
- output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
- instances = prepare_dataset(dataset, output_file, args.eval_n_limit)
- run_evaluation(
- instances,
- metadata,
- output_file,
- args.eval_num_workers,
- process_instance,
- )
|