| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273 |
- import asyncio
- import functools
- import os
- import re
- import huggingface_hub
- import pandas as pd
- from datasets import load_dataset
- from evaluation.benchmarks.gaia.scorer import question_scorer
- from evaluation.utils.shared import (
- EvalMetadata,
- EvalOutput,
- codeact_user_response,
- compatibility_for_eval_history_pairs,
- make_metadata,
- prepare_dataset,
- reset_logger_for_multiprocessing,
- run_evaluation,
- )
- from openhands.controller.state.state import State
- from openhands.core.config import (
- AppConfig,
- SandboxConfig,
- get_llm_config_arg,
- get_parser,
- )
- from openhands.core.logger import openhands_logger as logger
- from openhands.core.main import create_runtime, run_controller
- from openhands.events.action import AgentFinishAction, CmdRunAction, MessageAction
- from openhands.events.observation import CmdOutputObservation
- from openhands.runtime.base import Runtime
- from openhands.utils.async_utils import call_async_from_sync
- DATASET_CACHE_DIR = os.path.join(os.path.dirname(__file__), 'data')
- AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
- 'CodeActAgent': functools.partial(codeact_user_response, encapsulate_solution=True),
- }
- AGENT_CLS_TO_INST_SUFFIX = {
- 'CodeActAgent': 'When you think you have solved the question, please first send your answer to user through message and then exit.\n'
- }
- def get_config(
- metadata: EvalMetadata,
- ) -> AppConfig:
- config = AppConfig(
- default_agent=metadata.agent_class,
- run_as_openhands=False,
- runtime='eventstream',
- max_iterations=metadata.max_iterations,
- sandbox=SandboxConfig(
- base_container_image='python:3.12-bookworm',
- enable_auto_lint=True,
- use_host_network=False,
- ),
- # do not mount workspace
- workspace_base=None,
- workspace_mount_path=None,
- )
- config.set_llm_config(metadata.llm_config)
- return config
- def initialize_runtime(
- runtime: Runtime,
- instance: pd.Series, # this argument is not required
- ):
- """Initialize the runtime for the agent.
- This function is called before the runtime is used to run the agent.
- """
- logger.info(f"{'-' * 50} BEGIN Runtime Initialization Fn {'-' * 50}")
- obs: CmdOutputObservation
- action = CmdRunAction(command='mkdir -p /workspace')
- logger.info(action, extra={'msg_type': 'ACTION'})
- obs = runtime.run_action(action)
- assert obs.exit_code == 0
- if instance['file_name'] != '':
- # if this question comes with a file, we need to save it to the workspace
- assert metadata.data_split is not None
- src_file = os.path.join(
- DATASET_CACHE_DIR, '2023', metadata.data_split, instance['file_name']
- )
- assert os.path.exists(src_file)
- dest_file = os.path.join('/workspace', instance['file_name'])
- runtime.copy_to(src_file, dest_file)
- # rename to file.extension_name
- extension_name = instance['file_name'].split('.')[-1]
- action = CmdRunAction(
- command=f'mv /workspace/{instance["file_name"]} /workspace/file.{extension_name}'
- )
- logger.info(action, extra={'msg_type': 'ACTION'})
- obs = runtime.run_action(action)
- assert obs.exit_code == 0
- action = CmdRunAction(command='cd /workspace')
- logger.info(action, extra={'msg_type': 'ACTION'})
- obs = runtime.run_action(action)
- assert obs.exit_code == 0
- logger.info(f"{'-' * 50} END Runtime Initialization Fn {'-' * 50}")
- def process_instance(
- instance: pd.Series,
- metadata: EvalMetadata,
- reset_logger: bool = True,
- ) -> EvalOutput:
- config = get_config(metadata)
- # Setup the logger properly, so you can run multi-processing to parallelize the evaluation
- if reset_logger:
- log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
- reset_logger_for_multiprocessing(logger, instance['instance_id'], log_dir)
- else:
- logger.info(f'Starting evaluation for instance {instance["instance_id"]}.')
- if instance['file_name'] != '':
- extension_name = instance['file_name'].split('.')[-1]
- dest_file = os.path.join('/workspace', f'file.{extension_name}')
- else:
- dest_file = None
- # Prepare instruction
- instruction = f"{instance['Question']}\n"
- logger.info(f'Instruction: {instruction}')
- if dest_file:
- instruction += f"\n\nThe mentioned file is provided in the workspace at: {dest_file.split('/')[-1]}"
- instruction += 'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n'
- instruction += 'Please encapsulate your final answer (answer ONLY) within <solution> and </solution>.\n'
- instruction += (
- 'For example: The answer to the question is <solution> 42 </solution>.\n'
- )
- # NOTE: You can actually set slightly different instruction for different agents
- instruction += AGENT_CLS_TO_INST_SUFFIX.get(metadata.agent_class, '')
- logger.info(f'Instruction:\n{instruction}', extra={'msg_type': 'OBSERVATION'})
- runtime = create_runtime(config)
- call_async_from_sync(runtime.connect)
- initialize_runtime(runtime, instance)
- # Here's how you can run the agent (similar to the `main` function) and get the final task state
- state: State | None = asyncio.run(
- run_controller(
- config=config,
- initial_user_action=MessageAction(content=instruction),
- runtime=runtime,
- fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN[
- metadata.agent_class
- ],
- )
- )
- # ======= Attempt to evaluate the agent's edits =======
- # If you are working on simpler benchmark that only evaluates the final model output (e.g., in a MessageAction)
- # You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation.
- if state is None:
- raise ValueError('State should not be None.')
- model_answer_raw = ''
- # get the last message or thought from the agent
- for event in reversed(state.history):
- if event.source == 'agent':
- if isinstance(event, AgentFinishAction):
- model_answer_raw = event.thought
- break
- elif isinstance(event, CmdRunAction):
- model_answer_raw = event.thought
- break
- elif isinstance(event, MessageAction):
- model_answer_raw = event.content
- break
- # attempt to parse model_answer
- model_answer = re.findall(r'<solution>(.*?)</solution>', model_answer_raw)
- if len(model_answer) == 0:
- logger.warning(f'Failed to parse model answer: {model_answer_raw}')
- model_answer = model_answer_raw
- else:
- model_answer = model_answer[0]
- logger.info(
- f'Final message: {model_answer} | Ground truth: {instance["Final answer"]}'
- )
- score = question_scorer(
- model_answer=model_answer, ground_truth=instance['Final answer']
- )
- test_result = {
- 'score': score,
- 'model_answer_raw': model_answer_raw,
- 'model_answer': model_answer,
- 'ground_truth': instance['Final answer'],
- }
- metrics = state.metrics.get() if state.metrics else None
- # history is now available as a stream of events, rather than list of pairs of (Action, Observation)
- # for compatibility with the existing output format, we can remake the pairs here
- # remove when it becomes unnecessary
- histories = compatibility_for_eval_history_pairs(state.history)
- # Save the output
- output = EvalOutput(
- instance_id=instance['instance_id'],
- instance=instance.to_dict(),
- instruction=instance['Question'],
- metadata=metadata,
- history=histories,
- metrics=metrics,
- error=state.last_error if state and state.last_error else None,
- test_result=test_result,
- )
- return output
- if __name__ == '__main__':
- parser = get_parser()
- parser.add_argument(
- '--level',
- type=str,
- help='gaia level to evaluate, eg. 2023_level1',
- )
- parser.add_argument(
- '--data-split',
- type=str,
- help='data split to evaluate, eg. test',
- default='validation',
- )
- args, _ = parser.parse_known_args()
- llm_config = None
- if args.llm_config:
- llm_config = get_llm_config_arg(args.llm_config)
- if llm_config is None:
- raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
- metadata = make_metadata(
- llm_config=llm_config,
- dataset_name='gaia',
- agent_class=args.agent_cls,
- max_iterations=args.max_iterations,
- eval_note=args.eval_note,
- eval_output_dir=args.eval_output_dir,
- data_split=args.data_split,
- details={'gaia-level': args.level},
- )
- dataset = load_dataset('gaia-benchmark/GAIA', args.level)
- huggingface_hub.snapshot_download(
- 'gaia-benchmark/GAIA',
- repo_type='dataset',
- local_dir=DATASET_CACHE_DIR,
- )
- gaia_tests = dataset[metadata.data_split].to_pandas()
- gaia_tests.rename(columns={'task_id': 'instance_id'}, inplace=True)
- output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
- prepared_dataset = prepare_dataset(gaia_tests, output_file, args.eval_n_limit)
- run_evaluation(
- dataset=prepared_dataset,
- metadata=metadata,
- output_file=output_file,
- num_workers=args.eval_num_workers,
- process_instance_func=process_instance,
- )
|