| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308 |
- """Implements evaluation of agents on HumanEvalFix from the HumanEvalPack benchmark introduced in
- "OctoPack: Instruction Tuning Code Large Language Models" (https://arxiv.org/abs/2308.07124).
- Please see https://github.com/bigcode-project/bigcode-evaluation-harness/blob/main/bigcode_eval/tasks/humanevalpack.py
- for the reference implementation used in the paper.
- TODOs:
- - Potentially support other HumanEvalPack datasets (Explain & Synthesize)
- - Support other languages (currently only Python)
- """
- import asyncio
- import os
- import tempfile
- from typing import Any
- import pandas as pd
- from datasets import load_dataset
- from evaluate import load
- from evaluation.utils.shared import (
- EvalMetadata,
- EvalOutput,
- codeact_user_response,
- compatibility_for_eval_history_pairs,
- make_metadata,
- prepare_dataset,
- reset_logger_for_multiprocessing,
- run_evaluation,
- )
- from openhands.controller.state.state import State
- from openhands.core.config import (
- AppConfig,
- SandboxConfig,
- get_llm_config_arg,
- parse_arguments,
- )
- from openhands.core.logger import openhands_logger as logger
- from openhands.core.main import create_runtime, run_controller
- from openhands.events.action import CmdRunAction, MessageAction
- from openhands.events.observation import CmdOutputObservation
- from openhands.runtime.base import Runtime
- from openhands.utils.async_utils import call_async_from_sync
- IMPORT_HELPER = {
- 'python': [
- 'import math',
- 'import re',
- 'import sys',
- 'import copy',
- 'import datetime',
- 'import itertools',
- 'import collections',
- 'import heapq',
- 'import statistics',
- 'import functools',
- 'import hashlib',
- 'import numpy',
- 'import numpy as np',
- 'import string',
- 'from typing import *',
- 'from collections import *',
- ],
- }
- LANGUAGE_TO_TIMEOUT = {
- 'python': 10,
- }
- LANGUAGE_TO_NUM_WORKERS = {
- 'python': 4,
- }
- AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
- 'CodeActAgent': codeact_user_response,
- }
- AGENT_CLS_TO_INST_SUFFIX = {
- 'CodeActAgent': 'When you think you have fixed the issue through code changes, please finish the interaction using the "finish" tool.\n'
- }
- def get_config(
- metadata: EvalMetadata,
- ) -> AppConfig:
- config = AppConfig(
- default_agent=metadata.agent_class,
- run_as_openhands=False,
- runtime='eventstream',
- max_iterations=metadata.max_iterations,
- sandbox=SandboxConfig(
- base_container_image='python:3.12-bookworm',
- enable_auto_lint=True,
- use_host_network=False,
- ),
- # do not mount workspace
- workspace_base=None,
- workspace_mount_path=None,
- )
- config.set_llm_config(metadata.llm_config)
- return config
- def _get_instance_id(instance: pd.Series) -> str:
- return instance.instance_id.replace('/', '__')
- def initialize_runtime(
- runtime: Runtime,
- instance: pd.Series, # this argument is not required
- ):
- """Initialize the runtime for the agent.
- This function is called before the runtime is used to run the agent.
- """
- logger.info(f"{'-' * 50} BEGIN Runtime Initialization Fn {'-' * 50}")
- obs: CmdOutputObservation
- action = CmdRunAction(command='mkdir -p /workspace')
- logger.info(action, extra={'msg_type': 'ACTION'})
- obs = runtime.run_action(action)
- assert obs.exit_code == 0
- action = CmdRunAction(command='cd /workspace')
- logger.info(action, extra={'msg_type': 'ACTION'})
- obs = runtime.run_action(action)
- assert obs.exit_code == 0
- problem_statement = (
- instance.declaration + instance.buggy_solution + '\n' + instance.test
- )
- filename = f'{_get_instance_id(instance)}.py'
- with tempfile.TemporaryDirectory() as tmpdir:
- host_script_path = os.path.join(tmpdir, filename)
- with open(host_script_path, 'w') as f:
- f.write(problem_statement)
- runtime.copy_to(
- host_script_path,
- '/workspace',
- )
- # check file exists
- action = CmdRunAction(command=f'ls /workspace/{_get_instance_id(instance)}.py')
- obs = runtime.run_action(action)
- assert obs.exit_code == 0
- logger.info(f"{'-' * 50} END Runtime Initialization Fn {'-' * 50}")
- def complete_runtime(
- runtime: Runtime,
- instance: pd.Series, # this argument is not required, but it is used to get the workspace_dir_name
- ) -> dict[str, Any]:
- """Complete the runtime for the agent.
- This function is called before the runtime is used to run the agent.
- If you need to do something in the sandbox to get the correctness metric after
- the agent has run, modify this function.
- """
- logger.info(f"{'-' * 50} BEGIN Runtime Completion Fn {'-' * 50}")
- obs: CmdOutputObservation
- # default value
- language = 'python'
- timeout = 10
- test_result = {'result': {}, 'metadata': {}}
- code_metric = load('Muennighoff/code_eval_octopack')
- timeout = LANGUAGE_TO_TIMEOUT[language]
- num_workers = LANGUAGE_TO_NUM_WORKERS[language]
- python_imports = '\n'.join(IMPORT_HELPER[language])
- action = CmdRunAction(
- command=f'cat /workspace/{_get_instance_id(instance)}.py', keep_prompt=False
- )
- obs = runtime.run_action(action)
- assert obs.exit_code == 0
- function = obs.content.replace('\r\n', '\n')
- logger.info(f'Function: {function}')
- function = [[python_imports + '\n' + function]]
- results, logs = code_metric.compute(
- references=[instance.test],
- predictions=function,
- language=language,
- timeout=timeout,
- num_workers=num_workers,
- )
- test_result['result'] = results
- test_result['metadata'] = {
- 'logs': logs,
- 'timeout': timeout,
- 'num_workers': num_workers,
- }
- logger.info(f"{'-' * 50} END Runtime Completion Fn {'-' * 50}")
- return test_result
- def process_instance(
- instance: pd.Series,
- metadata: EvalMetadata,
- reset_logger: bool = True,
- ) -> EvalOutput:
- config = get_config(metadata)
- # use a session id for concurrent evaluation
- sid = _get_instance_id(instance)
- # Setup the logger properly, so you can run multi-processing to parallelize the evaluation
- if reset_logger:
- log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
- reset_logger_for_multiprocessing(logger, instance.instance_id, log_dir)
- else:
- logger.info(f'Starting evaluation for instance {instance.instance_id}.')
- # Create file with HumanEvalFix problem
- # Prompt reference: https://github.com/bigcode-project/bigcode-evaluation-harness/blob/84b96da31b7f840b55c5733325346176140cdb6b/bigcode_eval/tasks/humanevalpack.py#L509
- problem_statement = (
- instance.declaration + instance.buggy_solution + '\n' + instance.test
- )
- # Prepare instruction
- instruction = (
- f'Please fix the function in {sid}.py such that all test cases pass.\n'
- 'Environment has been set up for you to start working. You may assume all necessary tools are installed.\n\n'
- '# Problem Statement\n'
- f'{problem_statement}\n\n'
- )
- instruction += (
- 'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n'
- 'You should NOT modify any existing test case files. If needed, you can add new test cases in a NEW file to reproduce the issue.\n'
- 'You SHOULD INCLUDE PROPER INDENTATION in your edit commands.\n'
- )
- # NOTE: You can actually set slightly different instruction for different agents
- instruction += AGENT_CLS_TO_INST_SUFFIX[metadata.agent_class]
- # Here's how you can run the agent (similar to the `main` function) and get the final task state
- runtime = create_runtime(config)
- call_async_from_sync(runtime.connect)
- initialize_runtime(runtime, instance)
- state: State | None = asyncio.run(
- run_controller(
- config=config,
- initial_user_action=MessageAction(content=instruction),
- runtime=runtime,
- fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN.get(
- metadata.agent_class
- ),
- )
- )
- if state is None:
- raise ValueError('State should not be None.')
- metrics = state.metrics.get() if state.metrics else None
- test_result = complete_runtime(runtime, instance)
- # history is now available as a stream of events, rather than list of pairs of (Action, Observation)
- # for compatibility with the existing output format, we can remake the pairs here
- # remove when it becomes unnecessary
- histories = compatibility_for_eval_history_pairs(state.history)
- # Save the output
- output = EvalOutput(
- instance_id=instance.instance_id,
- instruction=instruction,
- metadata=metadata,
- history=histories,
- metrics=metrics,
- error=state.last_error if state and state.last_error else None,
- test_result=test_result,
- )
- return output
- if __name__ == '__main__':
- args = parse_arguments()
- # NOTE: It is preferable to load datasets from huggingface datasets and perform post-processing
- # so we don't need to manage file uploading to OpenHands's repo
- dataset = load_dataset(
- 'bigcode/humanevalpack', 'python'
- ) # TODO: Support other languages
- hefix_tests = dataset['test'].to_pandas()
- hefix_tests.rename(columns={'task_id': 'instance_id'}, inplace=True)
- llm_config = None
- if args.llm_config:
- llm_config = get_llm_config_arg(args.llm_config)
- if llm_config is None:
- raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
- metadata = make_metadata(
- llm_config,
- 'humanevalfix-python',
- args.agent_cls,
- args.max_iterations,
- args.eval_note,
- args.eval_output_dir,
- )
- output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
- instances = prepare_dataset(hefix_tests, output_file, args.eval_n_limit)
- run_evaluation(
- instances,
- metadata,
- output_file,
- args.eval_num_workers,
- process_instance,
- )
|