| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311 |
- """Implements evaluation of agents on ML-Bench, a benchmark for assessing the effectiveness of
- Large Language Models (LLMs) in leveraging existing functions in open-source libraries for
- machine learning tasks. The benchmark is introduced in the paper "ML-Bench: Evaluating Large
- Language Models for Code Generation in Repository-Level Machine Learning Tasks"
- (https://arxiv.org/abs/2311.09835).
- Please see https://ghcr.io/super-dainiu/ml_bench and https://huggingface.co/datasets/super-dainiu/ml-bench
- for more details on the dataset and docker image used in this evaluation script.
- TODOs:
- - Support additional evaluation settings, such as providing raw README content or using a
- retriever to extract relevant segments.
- - Clean up the code and docker image used for evaluation.
- """
- import asyncio
- import os
- from typing import Any
- import pandas as pd
- from datasets import load_dataset
- from evaluation.utils.shared import (
- EvalMetadata,
- EvalOutput,
- codeact_user_response,
- compatibility_for_eval_history_pairs,
- make_metadata,
- prepare_dataset,
- reset_logger_for_multiprocessing,
- run_evaluation,
- )
- from openhands.controller.state.state import State
- from openhands.core.config import (
- AppConfig,
- SandboxConfig,
- get_llm_config_arg,
- get_parser,
- load_app_config,
- )
- from openhands.core.logger import openhands_logger as logger
- from openhands.core.main import create_runtime, run_controller
- from openhands.events.action import CmdRunAction, MessageAction
- from openhands.events.observation import CmdOutputObservation
- from openhands.runtime.base import Runtime
- from openhands.utils.async_utils import call_async_from_sync
- config = load_app_config()
- AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
- 'CodeActAgent': codeact_user_response,
- }
- AGENT_CLS_TO_INST_SUFFIX = {
- 'CodeActAgent': 'When you think you have completed the task, please finish the interaction using the "finish" tool.\n'
- }
- ID2CONDA = {
- 1: 'dgl_DS',
- 2: 'bert_DS',
- 3: 'lavis_DS',
- 4: 'if_DS',
- 5: 'V2V_DS',
- 6: 'esm_DS',
- 7: 'OP_DS',
- 8: 'TSL_DS',
- 9: 'EAP_DS',
- 10: 'PG_DS',
- 11: 'PIM_DS',
- 12: 'AD2_DS',
- 13: 'L3_DS',
- 14: 'MZ2_DS',
- 15: 'GSA2_DS',
- }
- def get_config(
- metadata: EvalMetadata,
- ) -> AppConfig:
- config = AppConfig(
- default_agent=metadata.agent_class,
- run_as_openhands=False,
- runtime='eventstream',
- max_iterations=metadata.max_iterations,
- sandbox=SandboxConfig(
- base_container_image='public.ecr.aws/i5g0m1f6/ml-bench',
- enable_auto_lint=True,
- use_host_network=False,
- ),
- # do not mount workspace
- workspace_base=None,
- workspace_mount_path=None,
- )
- config.set_llm_config(metadata.llm_config)
- return config
- def initialize_runtime(
- runtime: Runtime,
- instance: pd.Series, # this argument is not required
- ):
- """Initialize the runtime for the agent.
- This function is called before the runtime is used to run the agent.
- """
- logger.info(f"{'-' * 50} BEGIN Runtime Initialization Fn {'-' * 50}")
- obs: CmdOutputObservation
- # Set instance id
- action = CmdRunAction(command='mkdir -p /workspace')
- logger.info(action, extra={'msg_type': 'ACTION'})
- obs = runtime.run_action(action)
- assert obs.exit_code == 0
- # Set up the task environment
- action = CmdRunAction(command=f'conda activate {ID2CONDA[instance["github_id"]]}')
- logger.info(action, extra={'msg_type': 'ACTION'})
- obs = runtime.run_action(action)
- assert obs.exit_code == 0
- repo_url = instance['github']
- repo_name = repo_url.split('/')[-1]
- action = CmdRunAction(command=f'git clone {repo_url} /workspace/{repo_name}')
- logger.info(action, extra={'msg_type': 'ACTION'})
- obs = runtime.run_action(action)
- assert obs.exit_code == 0
- action = CmdRunAction(command=f'chmod -R 777 /workspace/{repo_name}')
- logger.info(action, extra={'msg_type': 'ACTION'})
- obs = runtime.run_action(action)
- assert obs.exit_code == 0
- # Navigate to the task's code path
- task_path = os.path.join('/workspace', repo_name, instance['path'][2:])
- action = CmdRunAction(command=f'cd {task_path}')
- logger.info(action, extra={'msg_type': 'ACTION'})
- obs = runtime.run_action(action)
- assert obs.exit_code == 0
- logger.info(f"{'-' * 50} END Runtime Initialization Fn {'-' * 50}")
- def complete_runtime(
- runtime: Runtime,
- instance: pd.Series, # this argument is not required, but it is used to get the workspace_dir_name
- ) -> dict[str, Any]:
- """Complete the runtime for the agent.
- This function is called before the runtime is used to run the agent.
- If you need to do something in the sandbox to get the correctness metric after
- the agent has run, modify this function.
- """
- logger.info(f"{'-' * 50} BEGIN Runtime Completion Fn {'-' * 50}")
- obs: CmdOutputObservation
- repo_url = instance['github']
- repo_name = repo_url.split('/')[-1]
- task_path = os.path.join('/workspace', repo_name, instance['path'][2:])
- # Evaluate the agent's script
- eval_script = os.path.join(task_path, 'run.sh')
- logger.info(f'Running evaluation script: {eval_script}')
- action = CmdRunAction(command=f'cat {eval_script}', keep_prompt=False)
- logger.info(action, extra={'msg_type': 'ACTION'})
- obs = runtime.run_action(action)
- if obs.exit_code == 0:
- eval_script_content = obs.content
- else:
- logger.error(f'Error reading evaluation script: {obs.content}')
- eval_script_content = ''
- action = CmdRunAction(
- command=f'timeout 120s conda run -n {ID2CONDA[instance["github_id"]]} bash {eval_script}',
- timeout=600,
- )
- logger.info(action, extra={'msg_type': 'ACTION'})
- obs = runtime.run_action(action)
- if obs.exit_code == 0:
- eval_output = obs.content
- else:
- logger.error(f'Error running evaluation script: {obs.content}')
- eval_output = ''
- outputs = {
- 'eval_script_content': eval_script_content,
- 'eval_output': eval_output,
- }
- if obs.exit_code != 0 and obs.exit_code != 124:
- logger.warning(f'Evaluation script failed with exit code {obs.exit_code}')
- logger.warning(f'Output: {eval_output}')
- outputs['success'] = int(
- 'KeyboardInterrupt' in eval_output
- ) # super-dainiu: assume ``KeyboardInterrupt`` is a success as is done in ML-Bench
- else:
- logger.info(f'Evaluation script succeeded with exit code {obs.exit_code}')
- logger.info(f'Output: {eval_output}')
- outputs['success'] = 1
- outputs['eval_exit_code'] = obs.exit_code
- logger.info(f"{'-' * 50} END Runtime Completion Fn {'-' * 50}")
- return outputs
- def process_instance(instance: Any, metadata: EvalMetadata, reset_logger: bool = True):
- config = get_config(metadata)
- # Setup the logger properly, so you can run multi-processing to parallelize the evaluation
- if reset_logger:
- log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
- reset_logger_for_multiprocessing(logger, instance['instance_id'], log_dir)
- else:
- logger.info(f'Starting evaluation for instance {instance["instance_id"]}.')
- repo_url = instance['github']
- repo_name = repo_url.split('/')[-1]
- task_path = os.path.join('/workspace', repo_name, instance['path'][2:])
- # Prepare the task instruction
- instruction = (
- f'Please complete the Machine Learning task in the following repository: {repo_name}\n\n'
- f'{instance["instruction"]}\n\n'
- 'You should create a script named `run.sh` under the specified path in the repo to run the task.\n\n'
- f'You can find the task repo at: {task_path}\n\n'
- + (
- 'Here is the prefix code for the task:\n'
- '```bash\n'
- f'{instance["prefix_code"]}\n'
- '```\n\n'
- if instance['prefix_code']
- else ''
- )
- + 'You should terminate the subprocess after running the task (e.g., call subprocess.Popen(args).wait()).'
- )
- instruction += AGENT_CLS_TO_INST_SUFFIX[metadata.agent_class]
- runtime = create_runtime(config)
- call_async_from_sync(runtime.connect)
- initialize_runtime(runtime, instance)
- # Run the agent
- state: State | None = asyncio.run(
- run_controller(
- config=config,
- initial_user_action=MessageAction(content=instruction),
- runtime=runtime,
- fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN.get(
- metadata.agent_class
- ),
- )
- )
- assert state is not None
- metrics = state.metrics.get() if state.metrics else {}
- test_result = complete_runtime(runtime)
- # history is now available as a stream of events, rather than list of pairs of (Action, Observation)
- # for compatibility with the existing output format, we can remake the pairs here
- # remove when it becomes unnecessary
- histories = compatibility_for_eval_history_pairs(state.history)
- # Save the output
- output = EvalOutput(
- instance_id=instance['instance_id'],
- instance=instance.to_dict(),
- instruction=instruction,
- metadata=metadata,
- history=histories,
- test_result=test_result,
- metrics=metrics,
- )
- return output
- if __name__ == '__main__':
- parser = get_parser()
- parser.add_argument(
- '-s',
- '--eval-split',
- type=str,
- default='quarter',
- choices=['full', 'quarter'],
- help='data split to evaluate on, either full or quarter',
- )
- args, _ = parser.parse_known_args()
- data_split = args.eval_split
- ml_bench = load_dataset('super-dainiu/ml-bench', split=data_split).to_pandas()
- ml_bench.rename(columns={'id': 'instance_id'}, inplace=True)
- llm_config = None
- if args.llm_config:
- llm_config = get_llm_config_arg(args.llm_config)
- if llm_config is None:
- raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
- metadata = make_metadata(
- llm_config,
- f'ml-bench-{data_split}',
- args.agent_cls,
- args.max_iterations,
- args.eval_note,
- args.eval_output_dir,
- )
- output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
- instances = prepare_dataset(ml_bench, output_file, args.eval_n_limit)
- run_evaluation(
- instances, metadata, output_file, args.eval_num_workers, process_instance
- )
|