| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292 |
- import asyncio
- import os
- from typing import Any
- import pandas as pd
- from datasets import load_dataset
- from tqdm import tqdm
- from evaluation.utils.shared import (
- EvalMetadata,
- EvalOutput,
- codeact_user_response,
- compatibility_for_eval_history_pairs,
- make_metadata,
- prepare_dataset,
- reset_logger_for_multiprocessing,
- run_evaluation,
- update_llm_config_for_completions_logging,
- )
- from openhands.controller.state.state import State
- from openhands.core.config import (
- AppConfig,
- SandboxConfig,
- get_llm_config_arg,
- get_parser,
- )
- from openhands.core.logger import openhands_logger as logger
- from openhands.core.main import create_runtime, run_controller
- from openhands.events.action import CmdRunAction, MessageAction
- from openhands.events.observation import CmdOutputObservation
- from openhands.runtime.base import Runtime
- from openhands.utils.async_utils import call_async_from_sync
- AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
- 'CodeActAgent': codeact_user_response,
- }
- LOCAL_DATASET_PATH = os.path.join(os.path.dirname(__file__), 'benchmark')
- def format_task_dict(example, use_knowledge):
- task = {
- 'instance_id': example['instance_id'],
- 'task_inst': example['task_inst'],
- 'dataset_path': '/benchmark/datasets/'
- + example['dataset_folder_tree'].split('\n')[0][4:],
- 'dataset_folder_tree': example['dataset_folder_tree'],
- 'dataset_preview': example['dataset_preview'],
- 'pred_program_name': 'pred_' + example['gold_program_name'],
- }
- if use_knowledge:
- task['task_inst'] += '\n' + str(example['domain_knowledge'])
- return task
- def get_config(
- metadata: EvalMetadata,
- instance_id: str,
- ) -> AppConfig:
- config = AppConfig(
- default_agent=metadata.agent_class,
- run_as_openhands=False,
- runtime=os.environ.get('RUNTIME', 'eventstream'),
- max_budget_per_task=4,
- max_iterations=metadata.max_iterations,
- sandbox=SandboxConfig(
- base_container_image='docker.io/xingyaoww/openhands-eval-scienceagentbench',
- enable_auto_lint=True,
- use_host_network=False,
- timeout=300,
- api_key=os.environ.get('ALLHANDS_API_KEY', None),
- remote_runtime_api_url=os.environ.get('SANDBOX_REMOTE_RUNTIME_API_URL'),
- keep_runtime_alive=False,
- ),
- # do not mount workspace
- workspace_base=None,
- workspace_mount_path=None,
- )
- config.set_llm_config(
- update_llm_config_for_completions_logging(
- metadata.llm_config,
- metadata.eval_output_dir,
- instance_id,
- )
- )
- return config
- def initialize_runtime(
- runtime: Runtime,
- instance: pd.Series, # this argument is not required
- ):
- """Initialize the runtime for the agent.
- This function is called before the runtime is used to run the agent.
- """
- logger.info(f"{'-' * 50} BEGIN Runtime Initialization Fn {'-' * 50}")
- obs: CmdOutputObservation
- # Set up workspace directories
- action = CmdRunAction(command='mkdir -p /workspace/pred_programs')
- logger.info(action, extra={'msg_type': 'ACTION'})
- obs = runtime.run_action(action)
- assert obs.exit_code == 0
- action = CmdRunAction(command='mkdir -p /workspace/pred_results')
- logger.info(action, extra={'msg_type': 'ACTION'})
- obs = runtime.run_action(action)
- assert obs.exit_code == 0
- dataset_name = instance['dataset_folder_tree'].split('\n')[0][4:].rstrip('/')
- # Copy the dataset to the workspace
- dataset_dir = os.path.join(
- LOCAL_DATASET_PATH,
- 'datasets',
- dataset_name,
- )
- runtime.copy_to(dataset_dir, '/workspace/benchmark/datasets', recursive=True)
- # Check the dataset exists
- action = CmdRunAction(
- command='cd /workspace/benchmark/datasets && ls',
- keep_prompt=False,
- )
- obs = runtime.run_action(action)
- logger.info(obs, extra={'msg_type': 'OBSERVATION'})
- assert obs.exit_code == 0
- assert dataset_name in obs.content
- logger.info(f"{'-' * 50} END Runtime Initialization Fn {'-' * 50}")
- def complete_runtime(
- runtime: Runtime,
- instance: pd.Series,
- ) -> dict[str, Any]:
- """Complete the runtime for the agent.
- This function is called before the runtime is used to run the agent.
- If you need to do something in the sandbox to get the correctness metric after
- the agent has run, modify this function.
- """
- logger.info(f"{'-' * 50} BEGIN Runtime Completion Fn {'-' * 50}")
- obs: CmdOutputObservation
- test_result = {}
- action = CmdRunAction(command='cd /workspace')
- logger.info(action, extra={'msg_type': 'ACTION'})
- obs = runtime.run_action(action)
- assert obs.exit_code == 0
- action = CmdRunAction(
- command=f'cat pred_programs/{instance.pred_program_name}',
- keep_prompt=False,
- )
- logger.info(action, extra={'msg_type': 'ACTION'})
- obs = runtime.run_action(action)
- if obs.exit_code == 0:
- test_result = {'program': obs.content}
- else:
- test_result = {'program': 'ERROR'}
- logger.info(f"{'-' * 50} END Runtime Completion Fn {'-' * 50}")
- return test_result
- def process_instance(
- instance: pd.Series,
- metadata: EvalMetadata,
- reset_logger: bool = True,
- ) -> EvalOutput:
- instance_id = instance.instance_id.replace('/', '__')
- config = get_config(metadata, instance_id)
- # Set up the logger properly, so you can run multi-processing to parallelize the evaluation
- if reset_logger:
- log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
- reset_logger_for_multiprocessing(logger, instance_id, log_dir)
- else:
- logger.info(f'Starting evaluation for instance {instance_id}.')
- instruction = f"""You are an expert Python programming assistant that helps scientist users to write high-quality code to solve their tasks.
- Given a user request, you are expected to write a complete program that accomplishes the requested task and save any outputs to `/workspace/pred_results/` in the correct format.
- Here's the user request you need to work on:
- {instance.task_inst}
- You can access the dataset at `{instance.dataset_path}`. Here is the directory structure of the dataset:
- ```
- {instance.dataset_folder_tree}
- ```
- Here are some helpful previews for the dataset file(s):
- {instance.dataset_preview}
- Please save your program as `/workspace/pred_programs/{instance.pred_program_name}`.
- Then, please run the program to check and fix any errors.
- Please do NOT run the program in the background.
- If the program uses some packages that are incompatible, please figure out alternative implementations and do NOT restart the environment.
- """
- runtime = create_runtime(config)
- call_async_from_sync(runtime.connect)
- initialize_runtime(runtime, instance)
- # Here's how you can run the agent (similar to the `main` function) and get the final task state
- state: State | None = asyncio.run(
- run_controller(
- config=config,
- initial_user_action=MessageAction(content=instruction),
- runtime=runtime,
- fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN.get(
- metadata.agent_class
- ),
- )
- )
- # ======= Attempt to evaluate the agent's edits =======
- test_result = complete_runtime(runtime, instance)
- # If you are working on some simpler benchmark that only evaluates the final model output (e.g., in a MessageAction)
- # You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation.
- if state is None:
- raise ValueError('State should not be None.')
- metrics = state.metrics.get() if state.metrics else None
- # history is now available as a stream of events, rather than list of pairs of (Action, Observation)
- # for compatibility with the existing output format, we can remake the pairs here
- # remove when it becomes unnecessary
- histories = compatibility_for_eval_history_pairs(state.history)
- # Save the output
- output = EvalOutput(
- instance_id=instance.instance_id,
- instruction=instruction,
- metadata=metadata,
- history=histories,
- metrics=metrics,
- error=state.last_error if state and state.last_error else None,
- test_result=test_result,
- )
- return output
- if __name__ == '__main__':
- parser = get_parser()
- parser.add_argument(
- '--use_knowledge',
- type=str,
- default='false',
- choices=['true', 'false'],
- help='use expert-provided knowledge or not',
- )
- args, _ = parser.parse_known_args()
- sab_dataset = load_dataset('osunlp/ScienceAgentBench', split='validation')
- dataset_processed = []
- for example in tqdm(sab_dataset):
- dataset_processed.append(
- format_task_dict(example, args.use_knowledge == 'true')
- )
- dataset = pd.DataFrame(dataset_processed)
- llm_config = None
- if args.llm_config:
- llm_config = get_llm_config_arg(args.llm_config)
- if llm_config is None:
- raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
- metadata = make_metadata(
- llm_config,
- 'ScienceAgentBench',
- args.agent_cls,
- args.max_iterations,
- args.eval_note,
- args.eval_output_dir,
- )
- output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
- dataset['instance_id'] = dataset['instance_id'].apply(str)
- instances = prepare_dataset(dataset, output_file, args.eval_n_limit)
- run_evaluation(
- instances, metadata, output_file, args.eval_num_workers, process_instance
- )
|