| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221 |
- import asyncio
- import os
- from typing import Any
- import pandas as pd
- from evaluation.benchmarks.toolqa.utils import encode_question, eval_answer, get_data
- from evaluation.utils.shared import (
- EvalMetadata,
- EvalOutput,
- codeact_user_response,
- compatibility_for_eval_history_pairs,
- make_metadata,
- prepare_dataset,
- reset_logger_for_multiprocessing,
- run_evaluation,
- )
- from openhands.controller.state.state import State
- from openhands.core.config import (
- AppConfig,
- SandboxConfig,
- get_llm_config_arg,
- get_parser,
- )
- from openhands.core.logger import openhands_logger as logger
- from openhands.core.main import create_runtime, run_controller
- from openhands.events.action import CmdRunAction, MessageAction
- from openhands.events.observation import CmdOutputObservation
- from openhands.runtime.base import Runtime
- from openhands.utils.async_utils import call_async_from_sync
- AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
- 'CodeActAgent': codeact_user_response,
- }
- AGENT_CLS_TO_INST_SUFFIX = {
- 'CodeActAgent': 'When you think you have completed the request, please finish the interaction using the "finish" tool.\n'
- }
- def get_config(
- metadata: EvalMetadata,
- ) -> AppConfig:
- config = AppConfig(
- default_agent=metadata.agent_class,
- run_as_openhands=False,
- runtime='eventstream',
- max_iterations=metadata.max_iterations,
- sandbox=SandboxConfig(
- base_container_image='python:3.12-bookworm',
- enable_auto_lint=True,
- use_host_network=False,
- ),
- # do not mount workspace
- workspace_base=None,
- workspace_mount_path=None,
- )
- config.set_llm_config(metadata.llm_config)
- return config
- def initialize_runtime(runtime: Runtime):
- """Initialize the runtime for the agent.
- This function is called before the runtime is used to run the agent.
- """
- logger.info(f"{'-' * 50} BEGIN Runtime Initialization Fn {'-' * 50}")
- obs: CmdOutputObservation
- # Set instance id
- action = CmdRunAction(command='mkdir -p /workspace')
- logger.info(action, extra={'msg_type': 'ACTION'})
- obs = runtime.run_action(action)
- assert obs.exit_code == 0
- action = CmdRunAction(command='cd /workspace')
- logger.info(action, extra={'msg_type': 'ACTION'})
- obs = runtime.run_action(action)
- assert obs.exit_code == 0
- runtime.add_env_vars({'WOLFRAM_ALPHA_APPID': args.wolfram_alpha_appid})
- logger.info(f"{'-' * 50} END Runtime Initialization Fn {'-' * 50}")
- def process_instance(instance: Any, metadata: EvalMetadata, reset_logger: bool = True):
- config = get_config(metadata)
- qid = instance.qid
- question = instance.question
- answer = instance.answer
- # Setup the logger properly, so you can run multi-processing to parallelize the evaluation
- if reset_logger:
- log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
- reset_logger_for_multiprocessing(logger, qid, log_dir)
- else:
- logger.info(f'Starting evaluation for instance {qid}.')
- # Prepare instruction
- instruction = encode_question(question)
- instruction += 'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n'
- # NOTE: You can actually set slightly different instruction for different agents
- instruction += AGENT_CLS_TO_INST_SUFFIX[metadata.agent_class]
- logger.info(f'Instruction:\n{instruction}', extra={'msg_type': 'OBSERVATION'})
- runtime = create_runtime(config)
- call_async_from_sync(runtime.connect)
- initialize_runtime(runtime)
- # Here's how you can run the agent (similar to the `main` function) and get the final task state
- state: State | None = asyncio.run(
- run_controller(
- config=config,
- initial_user_action=MessageAction(content=instruction),
- runtime=runtime,
- fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN[
- metadata.agent_class
- ],
- )
- )
- # ======= Attempt to evaluate the agent's edits =======
- # If you are working on simpler benchmark that only evaluates the final model output (e.g., in a MessageAction)
- # You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation.
- if state is None:
- raise ValueError('State should not be None.')
- # retrieve the last message from the agent
- last_agent_message = state.get_last_agent_message()
- model_answer_raw = last_agent_message.content if last_agent_message else ''
- # attempt to parse model_answer
- correct = eval_answer(str(model_answer_raw), str(answer))
- logger.info(f'Final message: {model_answer_raw} | Correctness: {correct}')
- metrics = state.metrics.get() if state.metrics else None
- # history is now available as a stream of events, rather than list of pairs of (Action, Observation)
- # for compatibility with the existing output format, we can remake the pairs here
- # remove when it becomes unnecessary
- histories = compatibility_for_eval_history_pairs(state.history)
- # Save the output
- output = EvalOutput(
- instance_id=qid,
- test_result={
- 'model_answer_raw': model_answer_raw,
- 'correct': correct,
- },
- metadata=metadata,
- history=histories,
- metrics=metrics,
- error=state.last_error if state and state.last_error else None,
- )
- return output
- if __name__ == '__main__':
- parser = get_parser()
- parser.add_argument(
- '--dataset',
- type=str,
- help='Which dataset to evaluate from ToolQA. ToolQA contains 8 datasets, namely agenda, airbnb, coffee, dblp, flight, gsm8k, scirex, yelp. For example, the default is --dataset flight.',
- default='flight',
- )
- parser.add_argument(
- '--hardness',
- type=str,
- help='Which level of difficulty to evaluate from ToolQA. ToolQA contains 2 levels of hardness, namely easy and hard. For example, the default is --hardness easy.',
- default='easy',
- )
- parser.add_argument(
- '--wolfram_alpha_appid',
- type=str,
- help='wolfram alpha appid to use for wolfram alpha related tests',
- default='YOUR_WOLFRAMALPHA_APPID',
- )
- args, _ = parser.parse_known_args()
- llm_config = None
- if args.llm_config:
- llm_config = get_llm_config_arg(args.llm_config)
- if llm_config is None:
- raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
- dataset = ''
- hardness = ''
- dataset_choices = [
- 'agenda',
- 'airbnb',
- 'coffee',
- 'dblp',
- 'flight',
- 'gsm8k',
- 'scirex',
- 'yelp',
- 'genda',
- ]
- if args.dataset not in dataset_choices:
- raise ValueError(
- 'Please choose from agenda, airbnb, coffee, dblp, flight, gsm8k, scirex, yelp for dataset.'
- )
- if args.hardness not in ['easy', 'hard']:
- raise ValueError('Please choose from easy and hard for hardness.')
- toolqa_test = pd.DataFrame(get_data(dataset, hardness))
- toolqa_test.rename(columns={'qid': 'instance_id'}, inplace=True)
- metadata = make_metadata(
- llm_config,
- f'toolqa-{args.dataset}-{args.hardness}',
- args.agent_cls,
- args.eval_note,
- args.eval_output_dir,
- )
- output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
- instances = prepare_dataset(toolqa_test, output_file, args.eval_n_limit)
- run_evaluation(
- instances, metadata, output_file, args.eval_num_workers, process_instance
- )
|