| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235 |
- import asyncio
- import json
- import os
- from typing import Any
- import browsergym.webarena # noqa F401 register webarena tasks as gym environments
- import gymnasium as gym
- import pandas as pd
- from evaluation.utils.shared import (
- EvalMetadata,
- EvalOutput,
- compatibility_for_eval_history_pairs,
- make_metadata,
- prepare_dataset,
- reset_logger_for_multiprocessing,
- run_evaluation,
- )
- from openhands.controller.state.state import State
- from openhands.core.config import (
- AppConfig,
- SandboxConfig,
- get_llm_config_arg,
- parse_arguments,
- )
- from openhands.core.logger import openhands_logger as logger
- from openhands.core.main import create_runtime, run_controller
- from openhands.events.action import (
- BrowseInteractiveAction,
- CmdRunAction,
- MessageAction,
- )
- from openhands.events.observation import CmdOutputObservation
- from openhands.runtime.base import Runtime
- from openhands.runtime.browser.browser_env import (
- BROWSER_EVAL_GET_GOAL_ACTION,
- BROWSER_EVAL_GET_REWARDS_ACTION,
- )
- from openhands.utils.async_utils import call_async_from_sync
- SUPPORTED_AGENT_CLS = {'BrowsingAgent'}
- def get_config(
- metadata: EvalMetadata,
- env_id: str,
- ) -> AppConfig:
- base_url = os.environ.get('WEBARENA_BASE_URL', None)
- openai_api_key = os.environ.get('OPENAI_API_KEY', None)
- assert base_url is not None, 'WEBARENA_BASE_URL must be set'
- assert openai_api_key is not None, 'OPENAI_API_KEY must be set'
- config = AppConfig(
- default_agent=metadata.agent_class,
- run_as_openhands=False,
- runtime='eventstream',
- max_iterations=metadata.max_iterations,
- sandbox=SandboxConfig(
- base_container_image='python:3.12-bookworm',
- enable_auto_lint=True,
- use_host_network=False,
- browsergym_eval_env=env_id,
- runtime_startup_env_vars={
- 'BASE_URL': base_url,
- 'OPENAI_API_KEY': openai_api_key,
- 'SHOPPING': f'{base_url}:7770/',
- 'SHOPPING_ADMIN': f'{base_url}:7780/admin',
- 'REDDIT': f'{base_url}:9999',
- 'GITLAB': f'{base_url}:8023',
- 'WIKIPEDIA': f'{base_url}:8888/wikipedia_en_all_maxi_2022-05/A/User:The_other_Kiwix_guy/Landing',
- 'MAP': f'{base_url}:3000',
- 'HOMEPAGE': f'{base_url}:4399',
- },
- ),
- # do not mount workspace
- workspace_base=None,
- workspace_mount_path=None,
- )
- config.set_llm_config(metadata.llm_config)
- return config
- def initialize_runtime(
- runtime: Runtime,
- ) -> dict:
- """Initialize the runtime for the agent.
- This function is called before the runtime is used to run the agent.
- """
- logger.info(f"{'-' * 50} BEGIN Runtime Initialization Fn {'-' * 50}")
- obs: CmdOutputObservation
- # Set instance id
- action = CmdRunAction(command='mkdir -p /workspace')
- logger.info(action, extra={'msg_type': 'ACTION'})
- obs = runtime.run_action(action)
- assert obs.exit_code == 0
- action = BrowseInteractiveAction(browser_actions=BROWSER_EVAL_GET_GOAL_ACTION)
- logger.info(action, extra={'msg_type': 'ACTION'})
- obs = runtime.run_action(action)
- logger.info(obs, extra={'msg_type': 'OBSERVATION'})
- goal = obs.content
- logger.info(f"{'-' * 50} END Runtime Initialization Fn {'-' * 50}")
- return goal
- def complete_runtime(
- runtime: Runtime,
- ) -> dict[str, Any]:
- """Complete the runtime for the agent.
- This function is called before the runtime is used to run the agent.
- If you need to do something in the sandbox to get the correctness metric after
- the agent has run, modify this function.
- """
- logger.info(f"{'-' * 50} BEGIN Runtime Completion Fn {'-' * 50}")
- obs: CmdOutputObservation
- action = BrowseInteractiveAction(browser_actions=BROWSER_EVAL_GET_REWARDS_ACTION)
- logger.info(action, extra={'msg_type': 'ACTION'})
- obs = runtime.run_action(action)
- logger.info(obs, extra={'msg_type': 'OBSERVATION'})
- logger.info(f"{'-' * 50} END Runtime Completion Fn {'-' * 50}")
- return {
- 'rewards': json.loads(obs.content),
- }
- def process_instance(
- instance: pd.Series,
- metadata: EvalMetadata,
- reset_logger: bool = True,
- ):
- env_id = instance.instance_id
- config = get_config(metadata, env_id)
- # Setup the logger properly, so you can run multi-processing to parallelize the evaluation
- if reset_logger:
- log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
- reset_logger_for_multiprocessing(logger, env_id, log_dir)
- else:
- logger.info(f'Starting evaluation for instance {env_id}.')
- runtime = create_runtime(config)
- call_async_from_sync(runtime.connect)
- task_str = initialize_runtime(runtime)
- state: State | None = asyncio.run(
- run_controller(
- config=config,
- initial_user_action=MessageAction(content=task_str),
- runtime=runtime,
- )
- )
- # ======= Attempt to evaluate the agent's environment impact =======
- # If you are working on some simpler benchmark that only evaluates the final model output (e.g., in a MessageAction)
- # You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation.
- if state is None:
- raise ValueError('State should not be None.')
- metrics = state.metrics.get() if state.metrics else None
- # Instruction is the first message from the USER
- instruction = ''
- for event in state.history:
- if isinstance(event, MessageAction):
- instruction = event.content
- break
- return_val = complete_runtime(runtime)
- logger.info(f'Return value from complete_runtime: {return_val}')
- reward = max(return_val['rewards'])
- # history is now available as a stream of events, rather than list of pairs of (Action, Observation)
- # for compatibility with the existing output format, we can remake the pairs here
- # remove when it becomes unnecessary
- histories = compatibility_for_eval_history_pairs(state.history)
- # Save the output
- output = EvalOutput(
- instance_id=env_id,
- instruction=instruction,
- metadata=metadata,
- history=histories,
- metrics=metrics,
- error=state.last_error if state and state.last_error else None,
- test_result={
- 'reward': reward,
- },
- )
- return output
- if __name__ == '__main__':
- args = parse_arguments()
- dataset = pd.DataFrame(
- {
- 'instance_id': [
- id
- for id in gym.envs.registry.keys()
- if id.startswith('browsergym/webarena')
- ]
- }
- )
- llm_config = None
- if args.llm_config:
- llm_config = get_llm_config_arg(args.llm_config)
- if llm_config is None:
- raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
- metadata = make_metadata(
- llm_config,
- args.dataset_name,
- args.agent_cls,
- args.max_iterations,
- args.eval_note,
- args.eval_output_dir,
- )
- output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
- instances = prepare_dataset(dataset, output_file, args.eval_n_limit)
- run_evaluation(
- instances,
- metadata,
- output_file,
- args.eval_num_workers,
- process_instance,
- )
|