| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248 |
- import asyncio
- import importlib.util
- import os
- import pandas as pd
- from evaluation.integration_tests.tests.base import BaseIntegrationTest, TestResult
- from evaluation.utils.shared import (
- EvalMetadata,
- EvalOutput,
- codeact_user_response,
- make_metadata,
- prepare_dataset,
- reset_logger_for_multiprocessing,
- run_evaluation,
- update_llm_config_for_completions_logging,
- )
- from openhands.controller.state.state import State
- from openhands.core.config import (
- AgentConfig,
- AppConfig,
- SandboxConfig,
- get_llm_config_arg,
- parse_arguments,
- )
- from openhands.core.logger import openhands_logger as logger
- from openhands.core.main import create_runtime, run_controller
- from openhands.events.action import MessageAction
- from openhands.events.serialization.event import event_to_dict
- from openhands.runtime.base import Runtime
- from openhands.utils.async_utils import call_async_from_sync
- FAKE_RESPONSES = {
- 'CodeActAgent': codeact_user_response,
- }
- def get_config(
- metadata: EvalMetadata,
- instance_id: str,
- ) -> AppConfig:
- config = AppConfig(
- default_agent=metadata.agent_class,
- run_as_openhands=False,
- runtime=os.environ.get('RUNTIME', 'eventstream'),
- max_iterations=metadata.max_iterations,
- sandbox=SandboxConfig(
- # use default base_container_image
- enable_auto_lint=True,
- use_host_network=False,
- timeout=300,
- # Add platform to the sandbox config to solve issue 4401
- platform='linux/amd64',
- api_key=os.environ.get('ALLHANDS_API_KEY', None),
- remote_runtime_api_url=os.environ.get('SANDBOX_REMOTE_RUNTIME_API_URL'),
- keep_runtime_alive=False,
- remote_runtime_init_timeout=3600,
- ),
- # do not mount workspace
- workspace_base=None,
- workspace_mount_path=None,
- # debug
- debug=True,
- )
- config.set_llm_config(
- update_llm_config_for_completions_logging(
- metadata.llm_config, metadata.eval_output_dir, instance_id
- )
- )
- agent_config = AgentConfig(
- codeact_enable_jupyter=True,
- codeact_enable_browsing=True,
- codeact_enable_llm_editor=False,
- )
- config.set_agent_config(agent_config)
- return config
- def process_instance(
- instance: pd.Series,
- metadata: EvalMetadata,
- reset_logger: bool = True,
- ) -> EvalOutput:
- config = get_config(metadata, instance.instance_id)
- # Setup the logger properly, so you can run multi-processing to parallelize the evaluation
- if reset_logger:
- log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
- reset_logger_for_multiprocessing(logger, str(instance.instance_id), log_dir)
- else:
- logger.info(
- f'\nStarting evaluation for instance {str(instance.instance_id)}.\n'
- )
- # =============================================
- # import test instance
- # =============================================
- instance_id = instance.instance_id
- spec = importlib.util.spec_from_file_location(instance_id, instance.file_path)
- test_module = importlib.util.module_from_spec(spec)
- spec.loader.exec_module(test_module)
- assert hasattr(
- test_module, 'Test'
- ), f'Test module {instance_id} does not have a Test class'
- test_class: type[BaseIntegrationTest] = test_module.Test
- assert issubclass(
- test_class, BaseIntegrationTest
- ), f'Test class {instance_id} does not inherit from BaseIntegrationTest'
- instruction = test_class.INSTRUCTION
- # =============================================
- # create sandbox and run the agent
- # =============================================
- runtime: Runtime = create_runtime(config)
- call_async_from_sync(runtime.connect)
- try:
- test_class.initialize_runtime(runtime)
- # Here's how you can run the agent (similar to the `main` function) and get the final task state
- state: State | None = asyncio.run(
- run_controller(
- config=config,
- initial_user_action=MessageAction(content=instruction),
- runtime=runtime,
- fake_user_response_fn=FAKE_RESPONSES[metadata.agent_class],
- )
- )
- if state is None:
- raise ValueError('State should not be None.')
- # # =============================================
- # # result evaluation
- # # =============================================
- histories = state.history
- # some basic check
- logger.info(f'Total events in history: {len(histories)}')
- assert len(histories) > 0, 'History should not be empty'
- test_result: TestResult = test_class.verify_result(runtime, histories)
- metrics = state.metrics.get() if state.metrics else None
- finally:
- runtime.close()
- # Save the output
- output = EvalOutput(
- instance_id=str(instance.instance_id),
- instance=instance.to_dict(),
- instruction=instruction,
- metadata=metadata,
- history=[event_to_dict(event) for event in histories],
- metrics=metrics,
- error=state.last_error if state and state.last_error else None,
- test_result=test_result.model_dump(),
- )
- return output
- def load_integration_tests() -> pd.DataFrame:
- """Load tests from python files under ./tests"""
- cur_dir = os.path.dirname(os.path.abspath(__file__))
- test_dir = os.path.join(cur_dir, 'tests')
- test_files = [
- os.path.join(test_dir, f)
- for f in os.listdir(test_dir)
- if f.startswith('t') and f.endswith('.py')
- ]
- df = pd.DataFrame(test_files, columns=['file_path'])
- df['instance_id'] = df['file_path'].apply(
- lambda x: os.path.basename(x).rstrip('.py')
- )
- return df
- if __name__ == '__main__':
- args = parse_arguments()
- integration_tests = load_integration_tests()
- llm_config = None
- if args.llm_config:
- llm_config = get_llm_config_arg(args.llm_config)
- if llm_config is None:
- raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
- metadata = make_metadata(
- llm_config,
- 'integration_tests',
- args.agent_cls,
- args.max_iterations,
- args.eval_note,
- args.eval_output_dir,
- )
- output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
- # Parse dataset IDs if provided
- eval_ids = None
- if args.eval_ids:
- eval_ids = str(args.eval_ids).split(',')
- logger.info(f'\nUsing specific dataset IDs: {eval_ids}\n')
- instances = prepare_dataset(
- integration_tests,
- output_file,
- args.eval_n_limit,
- eval_ids=eval_ids,
- )
- run_evaluation(
- instances,
- metadata,
- output_file,
- args.eval_num_workers,
- process_instance,
- )
- df = pd.read_json(output_file, lines=True, orient='records')
- # record success and reason for failure for the final report
- df['success'] = df['test_result'].apply(lambda x: x['success'])
- df['reason'] = df['test_result'].apply(lambda x: x['reason'])
- logger.info('-' * 100)
- logger.info(
- f'Success rate: {df["success"].mean():.2%} ({df["success"].sum()}/{len(df)})'
- )
- logger.info(
- '\nEvaluation Results:'
- + '\n'
- + df[['instance_id', 'success', 'reason']].to_string(index=False)
- )
- logger.info('-' * 100)
- # record cost for each instance, with 3 decimal places
- df['cost'] = df['metrics'].apply(lambda x: round(x['accumulated_cost'], 3))
- logger.info(f'Total cost: USD {df["cost"].sum():.2f}')
- report_file = os.path.join(metadata.eval_output_dir, 'report.md')
- with open(report_file, 'w') as f:
- f.write(
- f'Success rate: {df["success"].mean():.2%} ({df["success"].sum()}/{len(df)})\n'
- )
- f.write(f'\nTotal cost: USD {df["cost"].sum():.2f}\n')
- f.write(
- df[['instance_id', 'success', 'reason', 'cost']].to_markdown(index=False)
- )
|