| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362 |
- import asyncio
- import functools
- import json
- import logging
- import multiprocessing as mp
- import os
- import pathlib
- import subprocess
- import time
- from concurrent.futures import ProcessPoolExecutor
- from typing import Dict
- import tasks
- from config_variables import TASK_INFO_MAP
- from datasets import load_dataset
- from datatypes import TaskState
- from env import SimplifiedEnv
- from prompts import ToolPromptTemplate
- from tasks import Task
- from tqdm import tqdm
- from evaluation.swe_bench.swe_env_box import DockerSSHBox
- from opendevin.controller.state.state import State
- from opendevin.core.config import config, get_llm_config_arg, get_parser
- from opendevin.core.logger import get_console_handler
- from opendevin.core.logger import opendevin_logger as logger
- from opendevin.core.main import main
- from opendevin.events.serialization.event import event_to_dict
- def cleanup():
- print('Cleaning up child processes...')
- for process in mp.active_children():
- print(f'Terminating child process: {process.name}')
- process.terminate()
- process.join()
- def codeact_user_response(state: State, task: Task, task_config: Dict[str, int]):
- logger.info(f'Gold reference: {task.reference}')
- logger.info(f'Task config: {task_config}')
- env = SimplifiedEnv(
- agent_state=state,
- task=task,
- task_config=task_config,
- )
- last_action, _ = state.history[-1]
- result_state: TaskState = env.step(last_action.message)
- state.task_state = result_state
- if not result_state.latest_output:
- # Task is finished
- msg = '/exit'
- else:
- msg = result_state.latest_output['content']
- logger.info('User response:' + msg)
- return msg
- def monologue_user_response(state: State) -> str:
- raise NotImplementedError('MonologueAgent should never ask for user responses.')
- AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
- 'CodeActAgent': codeact_user_response,
- 'MonologueAgent': monologue_user_response,
- }
- AGENT_CLS_TO_INST_SUFFIX = {
- 'CodeActAgent': '\nIMPORTANT: When your answer is confirmed by the user to be correct, you can exit using the following command: <execute_bash> exit </execute_bash>.\n'
- }
- def process_instance(
- instance: Task,
- agent_class,
- metadata,
- skip_workspace_mount,
- eval_output_dir,
- reset_logger: bool = True,
- ):
- workspace_mount_path = os.path.join(config.workspace_mount_path, '_eval_workspace')
- # create process-specific workspace dir
- # if `not skip_workspace_mount` - we will create a workspace directory for EACH process
- # so that different agent don't interfere with each other.
- if not skip_workspace_mount:
- workspace_mount_path = os.path.join(workspace_mount_path, str(os.getpid()))
- pathlib.Path(workspace_mount_path).mkdir(parents=True, exist_ok=True)
- # Setup the logger properly, so you can run multi-processing to parallelize the evaluation
- if reset_logger:
- # Set up logger
- log_file = os.path.join(
- eval_output_dir, 'logs', f'instance_{instance.task_id}.log'
- )
- # Remove all existing handlers from logger
- for handler in logger.handlers[:]:
- logger.removeHandler(handler)
- # add back the console handler to print ONE line
- logger.addHandler(get_console_handler())
- logger.info(
- f'Starting evaluation for instance {instance.task_id}.\nHint: run "tail -f {log_file}" to see live logs in a separate shell'
- )
- # Remove all existing handlers from logger
- for handler in logger.handlers[:]:
- logger.removeHandler(handler)
- file_handler = logging.FileHandler(log_file)
- file_handler.setFormatter(
- logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
- )
- logger.addHandler(file_handler)
- if not skip_workspace_mount:
- logger.info(f'Process-specific workspace mounted at {workspace_mount_path}')
- sandbox = DockerSSHBox()
- requirements_host_src = 'evaluation/mint/requirements.txt'
- requirements_sandbox_dest = '/opendevin/plugins/mint/requirements.txt'
- sandbox.copy_to(
- host_src=requirements_host_src,
- sandbox_dest=requirements_sandbox_dest,
- recursive=False,
- )
- logger.info(
- f'Copied files from [{requirements_host_src}] to [{requirements_sandbox_dest}] inside sandbox.'
- )
- exit_code, output = sandbox.execute(f'pip install -r {requirements_sandbox_dest}')
- # Prepare instruction
- instruction = ToolPromptTemplate(use_tool=True)(
- max_total_steps=metadata['max_iterations'],
- max_propose_solution=metadata['max_propose_solution'],
- in_context_example=instance.in_context_example(
- use_tool=True, with_feedback=False
- ),
- task_prompt='Task:\n' + instance.prompt,
- )
- instruction += 'IMPORTANT: You should ONLY interact with the environment provided to you or provide the concise RESULT inside <solution> tag AND NEVER ASK FOR HUMAN HELP.\n'
- # NOTE: You can actually set slightly different instruction for different agents
- instruction += AGENT_CLS_TO_INST_SUFFIX.get(agent_class, '')
- # Here's how you can run the agent (similar to the `main` function) and get the final task state
- fake_user_response_fn = functools.partial(
- AGENT_CLS_TO_FAKE_USER_RESPONSE_FN.get(agent_class),
- task=instance,
- task_config={
- 'max_iterations': metadata['max_iterations'],
- 'max_propose_solution': metadata['max_propose_solution'],
- },
- )
- state: State = asyncio.run(
- main(
- instruction,
- fake_user_response_fn=fake_user_response_fn,
- sandbox=sandbox,
- )
- )
- if state is None:
- raise ValueError('State should not be None.')
- task_state = None
- if hasattr(state, 'task_state'):
- task_state = state.task_state
- logger.info('Task state: ' + str(task_state.to_dict()))
- metrics = state.metrics.get() if state.metrics else None
- # Save the output
- output = {
- 'id': instance.task_id,
- 'instance': instance.to_dict(),
- 'instruction': instruction,
- 'metadata': metadata,
- 'history': [
- (event_to_dict(action), event_to_dict(obs)) for action, obs in state.history
- ],
- 'metrics': metrics,
- 'error': state.error if state and state.error else None,
- 'test_result': task_state.success if task_state else False,
- }
- # Close the sandbox
- sandbox.close()
- return output
- if __name__ == '__main__':
- parser = get_parser()
- parser.add_argument(
- '--subset',
- default='math',
- choices=['math', 'gsm8k', 'mmlu', 'theoremqa', 'mbpp', 'humaneval'],
- type=str,
- help='subset of the dataset to be used',
- )
- parser.add_argument(
- '--max-propose-solution',
- default=2,
- type=int,
- help='maximum number of times the agent can propose a solution',
- )
- args, _ = parser.parse_known_args()
- # NOTE: It is preferable to load datasets from huggingface datasets and perform post-processing
- # so we don't need to manage file uploading to OpenDevin's repo
- mint_dataset = load_dataset(
- 'ryanhoangt/xingyaoww-mint-bench', name=args.subset, split='test'
- )
- logger.info(f'Evaluating MINT - {args.subset} subset')
- # Check https://github.com/OpenDevin/OpenDevin/blob/main/evaluation/swe_bench/README.md#configure-opendevin-and-your-llm
- # for details of how to set `llm_config`
- if args.llm_config:
- specified_llm_config = get_llm_config_arg(args.llm_config)
- if specified_llm_config:
- config.llm = specified_llm_config
- logger.info(f'Config for evaluation: {config}')
- # TEST METADATA
- agent_class = args.agent_cls
- assert (
- agent_class in AGENT_CLS_TO_FAKE_USER_RESPONSE_FN
- ), f'Unsupported agent class: {agent_class}'
- model_name = config.llm.model.split('/')[-1]
- max_iterations = args.max_iterations
- eval_note = ''
- if args.eval_note is not None:
- eval_note += '_N_' + args.eval_note
- eval_output_dir = os.path.join(
- args.eval_output_dir,
- 'mint',
- agent_class,
- model_name + '_maxiter_' + str(max_iterations) + eval_note,
- args.subset,
- )
- pathlib.Path(eval_output_dir).mkdir(parents=True, exist_ok=True)
- pathlib.Path(os.path.join(eval_output_dir, 'logs')).mkdir(
- parents=True, exist_ok=True
- )
- logger.info(f'Using evaluation output directory: {eval_output_dir}')
- metadata = {
- 'agent_class': agent_class,
- 'model_name': model_name,
- 'max_iterations': max_iterations,
- 'max_propose_solution': args.max_propose_solution,
- 'eval_output_dir': eval_output_dir,
- 'start_time': time.strftime('%Y-%m-%d %H:%M:%S'),
- # get the commit id of current repo for reproducibility
- 'git_commit': subprocess.check_output(['git', 'rev-parse', 'HEAD'])
- .decode('utf-8')
- .strip(),
- }
- logger.info(f'Metadata: {metadata}')
- with open(os.path.join(eval_output_dir, 'metadata.json'), 'w') as f:
- json.dump(metadata, f)
- # LIMIT EVALUATION
- eval_n_limit = args.eval_n_limit
- if eval_n_limit:
- mint_dataset = mint_dataset.select(range(eval_n_limit))
- logger.info(f'Limiting evaluation to first {eval_n_limit} instances.')
- # OUTPUT FILE
- output_file = os.path.join(eval_output_dir, 'output.jsonl')
- logger.info(f'Writing evaluation output to {output_file}')
- finished_instance_ids = set()
- if os.path.exists(output_file):
- with open(output_file, 'r') as f:
- for line in f:
- data = json.loads(line)
- finished_instance_ids.add(data['id'])
- logger.warning(
- f'Output file {output_file} already exists. Loaded {len(finished_instance_ids)} finished instances.'
- )
- output_fp = open(output_file, 'a')
- logger.info(
- f'Evaluation started with Agent {agent_class}, model {model_name}, max iterations {max_iterations}, max propose solution {args.max_propose_solution}.'
- )
- # =============================================
- # filter out finished instances
- task_class: Task = getattr(tasks, TASK_INFO_MAP[args.subset]['class'])
- new_mint_tests: list[Task] = []
- for instance in mint_dataset:
- if instance['id'] in finished_instance_ids:
- logger.info(
- f'Skipping instance {instance["id"]} as it is already finished.'
- )
- continue
- # convert to Task object
- instance = task_class(**instance)
- new_mint_tests.append(instance)
- mint_dataset = new_mint_tests
- logger.info(
- f'Finished instances: {len(finished_instance_ids)}, Remaining instances: {len(mint_dataset)}'
- )
- # =============================================
- pbar = tqdm(total=len(mint_dataset))
- # This function tracks the progress AND write the output to a JSONL file
- def update_progress(future):
- pbar.update(1)
- output = future.result()
- # logger.info('Output: ', output)
- # pbar.set_description(f'Instance {output["instance_id"]}')
- # pbar.set_postfix_str(f'Test Result: {output["test_result"]["result"]}')
- # logger.info(
- # f'Finished evaluation for instance {output["instance_id"]}: {output["test_result"]["result"]}'
- # )
- output_fp.write(json.dumps(output) + '\n')
- output_fp.flush()
- # This sets the multi-processing
- num_workers = args.eval_num_workers
- logger.info(f'Using {num_workers} workers for evaluation.')
- # This is SWE-Bench specific - CodeActAgent doesn't require mounted workspace to work
- skip_workspace_mount = agent_class == 'CodeActAgent'
- logger.info(f'Skipping workspace mount: {skip_workspace_mount}')
- try:
- with ProcessPoolExecutor(num_workers) as executor:
- futures = []
- # This is how we perform multi-processing
- for instance in mint_dataset:
- future = executor.submit(
- process_instance,
- instance,
- agent_class,
- metadata,
- skip_workspace_mount,
- eval_output_dir,
- reset_logger=bool(num_workers > 1),
- )
- future.add_done_callback(update_progress)
- futures.append(future)
- # Wait for all futures to complete
- for future in futures:
- future.result()
- except KeyboardInterrupt:
- print('KeyboardInterrupt received. Cleaning up...')
- cleanup()
- output_fp.close()
- logger.info('Evaluation finished.')
|