| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310 |
- import asyncio
- import json
- import logging
- import multiprocessing as mp
- import os
- import pathlib
- import subprocess
- import time
- from concurrent.futures import ProcessPoolExecutor
- from typing import Any, Awaitable, Callable
- import pandas as pd
- from pydantic import BaseModel
- from tqdm import tqdm
- from openhands.controller.state.state import State
- from openhands.core.config import LLMConfig
- from openhands.core.logger import get_console_handler
- from openhands.core.logger import openhands_logger as logger
- from openhands.events.action import Action
- from openhands.events.action.message import MessageAction
- class EvalMetadata(BaseModel):
- agent_class: str
- llm_config: LLMConfig
- max_iterations: int
- eval_output_dir: str
- start_time: str
- git_commit: str
- dataset: str | None = None
- data_split: str | None = None
- details: dict[str, Any] | None = None
- def model_dump(self, *args, **kwargs):
- dumped_dict = super().model_dump(*args, **kwargs)
- # avoid leaking sensitive information
- dumped_dict['llm_config'] = self.llm_config.to_safe_dict()
- return dumped_dict
- def model_dump_json(self, *args, **kwargs):
- dumped = super().model_dump_json(*args, **kwargs)
- dumped_dict = json.loads(dumped)
- logger.debug(f'Dumped metadata: {dumped_dict}')
- # avoid leaking sensitive information
- dumped_dict['llm_config'] = self.llm_config.to_safe_dict()
- return json.dumps(dumped_dict)
- class EvalOutput(BaseModel):
- # NOTE: User-specified
- instance_id: str
- instruction: str
- # output of the evaluation
- # store anything that is needed for the score calculation
- test_result: dict[str, Any]
- # Interaction info
- metadata: EvalMetadata
- history: list[tuple[dict[str, Any], dict[str, Any]]]
- metrics: dict[str, Any]
- error: str | None = None
- # Optionally save the input test instance
- instance: dict[str, Any] | None = None
- def model_dump(self, *args, **kwargs):
- dumped_dict = super().model_dump(*args, **kwargs)
- # Apply custom serialization for metadata (to avoid leaking sensitive information)
- dumped_dict['metadata'] = self.metadata.model_dump()
- return dumped_dict
- def model_dump_json(self, *args, **kwargs):
- dumped = super().model_dump_json(*args, **kwargs)
- dumped_dict = json.loads(dumped)
- # Apply custom serialization for metadata (to avoid leaking sensitive information)
- dumped_dict['metadata'] = json.loads(self.metadata.model_dump_json())
- return json.dumps(dumped_dict)
- def codeact_user_response(
- state: State,
- encapsulate_solution: bool = False,
- try_parse: Callable[[Action], str] | None = None,
- ) -> str:
- encaps_str = (
- (
- 'Please encapsulate your final answer (answer ONLY) within <solution> and </solution>.\n'
- 'For example: The answer to the question is <solution> 42 </solution>.\n'
- )
- if encapsulate_solution
- else ''
- )
- msg = (
- 'Please continue working on the task on whatever approach you think is suitable.\n'
- 'If you think you have solved the task, please first send your answer to user through message and then <execute_bash> exit </execute_bash>.\n'
- f'{encaps_str}'
- 'IMPORTANT: YOU SHOULD NEVER ASK FOR HUMAN HELP.\n'
- )
- if state.history:
- # check if the last action has an answer, if so, early exit
- if try_parse is not None:
- last_action = state.history.get_last_action()
- ans = try_parse(last_action)
- if ans is not None:
- return '/exit'
- # check if the agent has tried to talk to the user 3 times, if so, let the agent know it can give up
- user_msgs = [
- event
- for event in state.history.get_events()
- if isinstance(event, MessageAction) and event.source == 'user'
- ]
- if len(user_msgs) >= 2:
- # let the agent know that it can give up when it has tried 3 times
- return (
- msg
- + 'If you want to give up, run: <execute_bash> exit </execute_bash>.\n'
- )
- return msg
- def cleanup():
- print('Cleaning up child processes...')
- for process in mp.active_children():
- print(f'Terminating child process: {process.name}')
- process.terminate()
- process.join()
- def make_metadata(
- llm_config: LLMConfig,
- dataset_name: str,
- agent_class: str,
- max_iterations: int,
- eval_note: str | None,
- eval_output_dir: str,
- data_split: str | None = None,
- details: dict[str, Any] | None = None,
- ) -> EvalMetadata:
- model_name = llm_config.model.split('/')[-1]
- eval_note = f'_N_{eval_note}' if eval_note else ''
- eval_output_path = os.path.join(
- eval_output_dir,
- dataset_name,
- agent_class,
- f'{model_name}_maxiter_{max_iterations}{eval_note}',
- )
- pathlib.Path(eval_output_path).mkdir(parents=True, exist_ok=True)
- pathlib.Path(os.path.join(eval_output_path, 'logs')).mkdir(
- parents=True, exist_ok=True
- )
- logger.info(f'Using evaluation output directory: {eval_output_path}')
- metadata = EvalMetadata(
- agent_class=agent_class,
- llm_config=llm_config,
- max_iterations=max_iterations,
- eval_output_dir=eval_output_path,
- start_time=time.strftime('%Y-%m-%d %H:%M:%S'),
- git_commit=subprocess.check_output(['git', 'rev-parse', 'HEAD'])
- .decode('utf-8')
- .strip(),
- dataset=dataset_name,
- data_split=data_split,
- details=details,
- )
- metadata_json = metadata.model_dump_json()
- logger.info(f'Metadata: {metadata_json}')
- with open(os.path.join(eval_output_path, 'metadata.json'), 'w') as f:
- f.write(metadata_json)
- return metadata
- def prepare_dataset(
- dataset: pd.DataFrame,
- output_file: str,
- eval_n_limit: int,
- eval_ids: list[str] | None = None,
- ):
- assert (
- 'instance_id' in dataset.columns
- ), "Expected 'instance_id' column in the dataset. You should define your own unique identifier for each instance and use it as the 'instance_id' column."
- id_column = 'instance_id'
- logger.info(f'Writing evaluation output to {output_file}')
- finished_ids = set()
- if os.path.exists(output_file):
- with open(output_file, 'r') as f:
- for line in f:
- data = json.loads(line)
- finished_ids.add(data[id_column])
- logger.warning(
- f'Output file {output_file} already exists. Loaded {len(finished_ids)} finished instances.'
- )
- if eval_ids:
- eval_ids_converted = [dataset[id_column].dtype.type(id) for id in eval_ids]
- dataset = dataset[dataset[id_column].isin(eval_ids_converted)]
- logger.info(f'Limiting evaluation to {len(eval_ids)} specific instances.')
- elif eval_n_limit:
- dataset = dataset.head(eval_n_limit)
- logger.info(f'Limiting evaluation to first {eval_n_limit} instances.')
- new_dataset = [
- instance
- for _, instance in dataset.iterrows()
- if instance[id_column] not in finished_ids
- ]
- logger.info(
- f'Finished instances: {len(finished_ids)}, Remaining instances: {len(new_dataset)}'
- )
- return pd.DataFrame(new_dataset)
- async def run_evaluation(
- dataset: pd.DataFrame,
- metadata: EvalMetadata,
- output_file: str,
- num_workers: int,
- process_instance_func: Callable[
- [pd.Series, EvalMetadata, bool], Awaitable[EvalOutput]
- ],
- ):
- use_multiprocessing = num_workers > 1
- logger.info(
- f'Evaluation started with Agent {metadata.agent_class}, '
- f'model {metadata.llm_config.model}, max iterations {metadata.max_iterations}.'
- )
- pbar = tqdm(total=len(dataset))
- output_fp = open(output_file, 'a')
- async def update_progress(future):
- pbar.update(1)
- output: EvalOutput = await future if use_multiprocessing else future
- pbar.set_description(f'Instance {output.instance_id}')
- pbar.set_postfix_str(f'Test Result: {output.test_result}')
- logger.info(
- f'Finished evaluation for instance {output.instance_id}: {output.test_result}'
- )
- output_fp.write(json.dumps(output.model_dump()) + '\n')
- output_fp.flush()
- try:
- if use_multiprocessing:
- with ProcessPoolExecutor(num_workers) as executor:
- loop = asyncio.get_event_loop()
- futures = []
- for _, instance in dataset.iterrows():
- future = loop.run_in_executor(
- executor,
- process_instance_func,
- instance,
- metadata,
- bool(num_workers > 1),
- )
- futures.append(update_progress(future))
- await asyncio.gather(*futures)
- # Use plain for loop for single process for easier debugging
- else:
- assert num_workers == 1
- for _, instance in dataset.iterrows():
- output = await process_instance_func(instance, metadata, False)
- await update_progress(output)
- except KeyboardInterrupt:
- print('KeyboardInterrupt received. Cleaning up...')
- cleanup()
- output_fp.close()
- logger.info('Evaluation finished.')
- def reset_logger_for_multiprocessing(
- logger: logging.Logger, instance_id: str, log_dir: str
- ):
- """Reset the logger for multiprocessing.
- Save logs to a separate file for each process, instead of trying to write to the
- same file/console from multiple processes.
- """
- # Set up logger
- log_file = os.path.join(
- log_dir,
- f'instance_{instance_id}.log',
- )
- # Remove all existing handlers from logger
- for handler in logger.handlers[:]:
- logger.removeHandler(handler)
- # add back the console handler to print ONE line
- logger.addHandler(get_console_handler())
- logger.info(
- f'Starting evaluation for instance {instance_id}.\n'
- f'Hint: run "tail -f {log_file}" to see live logs in a separate shell'
- )
- # Remove all existing handlers from logger
- for handler in logger.handlers[:]:
- logger.removeHandler(handler)
- os.makedirs(os.path.dirname(log_file), exist_ok=True)
- file_handler = logging.FileHandler(log_file)
- file_handler.setFormatter(
- logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
- )
- logger.addHandler(file_handler)
|