| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280 |
- import os
- from itertools import islice
- from agenthub.codeact_agent.action_parser import CodeActResponseParser
- from openhands.controller.agent import Agent
- from openhands.controller.state.state import State
- from openhands.core.config import AgentConfig
- from openhands.core.message import ImageContent, Message, TextContent
- from openhands.events.action import (
- Action,
- AgentDelegateAction,
- AgentFinishAction,
- CmdRunAction,
- IPythonRunCellAction,
- MessageAction,
- )
- from openhands.events.observation import (
- AgentDelegateObservation,
- CmdOutputObservation,
- IPythonRunCellObservation,
- UserRejectObservation,
- )
- from openhands.events.observation.error import ErrorObservation
- from openhands.events.observation.observation import Observation
- from openhands.events.serialization.event import truncate_content
- from openhands.llm.llm import LLM
- from openhands.runtime.plugins import (
- AgentSkillsRequirement,
- JupyterRequirement,
- PluginRequirement,
- )
- from openhands.utils.microagent import MicroAgent
- from openhands.utils.prompt import PromptManager
- class CodeActAgent(Agent):
- VERSION = '1.9'
- """
- The Code Act Agent is a minimalist agent.
- The agent works by passing the model a list of action-observation pairs and prompting the model to take the next step.
- ### Overview
- This agent implements the CodeAct idea ([paper](https://arxiv.org/abs/2402.01030), [tweet](https://twitter.com/xingyaow_/status/1754556835703751087)) that consolidates LLM agents’ **act**ions into a unified **code** action space for both *simplicity* and *performance* (see paper for more details).
- The conceptual idea is illustrated below. At each turn, the agent can:
- 1. **Converse**: Communicate with humans in natural language to ask for clarification, confirmation, etc.
- 2. **CodeAct**: Choose to perform the task by executing code
- - Execute any valid Linux `bash` command
- - Execute any valid `Python` code with [an interactive Python interpreter](https://ipython.org/). This is simulated through `bash` command, see plugin system below for more details.
- 
- """
- sandbox_plugins: list[PluginRequirement] = [
- # NOTE: AgentSkillsRequirement need to go before JupyterRequirement, since
- # AgentSkillsRequirement provides a lot of Python functions,
- # and it needs to be initialized before Jupyter for Jupyter to use those functions.
- AgentSkillsRequirement(),
- JupyterRequirement(),
- ]
- action_parser = CodeActResponseParser()
- def __init__(
- self,
- llm: LLM,
- config: AgentConfig,
- ) -> None:
- """Initializes a new instance of the CodeActAgent class.
- Parameters:
- - llm (LLM): The llm to be used by this agent
- """
- super().__init__(llm, config)
- self.reset()
- self.micro_agent = (
- MicroAgent(
- os.path.join(
- os.path.dirname(__file__), 'micro', f'{config.micro_agent_name}.md'
- )
- )
- if config.micro_agent_name
- else None
- )
- self.prompt_manager = PromptManager(
- prompt_dir=os.path.join(os.path.dirname(__file__)),
- agent_skills_docs=AgentSkillsRequirement.documentation,
- micro_agent=self.micro_agent,
- )
- def action_to_str(self, action: Action) -> str:
- if isinstance(action, CmdRunAction):
- return (
- f'{action.thought}\n<execute_bash>\n{action.command}\n</execute_bash>'
- )
- elif isinstance(action, IPythonRunCellAction):
- return f'{action.thought}\n<execute_ipython>\n{action.code}\n</execute_ipython>'
- elif isinstance(action, AgentDelegateAction):
- return f'{action.thought}\n<execute_browse>\n{action.inputs["task"]}\n</execute_browse>'
- elif isinstance(action, MessageAction):
- return action.content
- elif isinstance(action, AgentFinishAction) and action.source == 'agent':
- return action.thought
- return ''
- def get_action_message(self, action: Action) -> Message | None:
- if (
- isinstance(action, AgentDelegateAction)
- or isinstance(action, CmdRunAction)
- or isinstance(action, IPythonRunCellAction)
- or isinstance(action, MessageAction)
- or (isinstance(action, AgentFinishAction) and action.source == 'agent')
- ):
- content = [TextContent(text=self.action_to_str(action))]
- if (
- self.llm.vision_is_active()
- and isinstance(action, MessageAction)
- and action.images_urls
- ):
- content.append(ImageContent(image_urls=action.images_urls))
- return Message(
- role='user' if action.source == 'user' else 'assistant', content=content
- )
- return None
- def get_observation_message(self, obs: Observation) -> Message | None:
- max_message_chars = self.llm.config.max_message_chars
- obs_prefix = 'OBSERVATION:\n'
- if isinstance(obs, CmdOutputObservation):
- text = obs_prefix + truncate_content(obs.content, max_message_chars)
- text += (
- f'\n[Command {obs.command_id} finished with exit code {obs.exit_code}]'
- )
- return Message(role='user', content=[TextContent(text=text)])
- elif isinstance(obs, IPythonRunCellObservation):
- text = obs_prefix + obs.content
- # replace base64 images with a placeholder
- splitted = text.split('\n')
- for i, line in enumerate(splitted):
- if ' already displayed to user'
- )
- text = '\n'.join(splitted)
- text = truncate_content(text, max_message_chars)
- return Message(role='user', content=[TextContent(text=text)])
- elif isinstance(obs, AgentDelegateObservation):
- text = obs_prefix + truncate_content(
- obs.outputs['content'] if 'content' in obs.outputs else '',
- max_message_chars,
- )
- return Message(role='user', content=[TextContent(text=text)])
- elif isinstance(obs, ErrorObservation):
- text = obs_prefix + truncate_content(obs.content, max_message_chars)
- text += '\n[Error occurred in processing last action]'
- return Message(role='user', content=[TextContent(text=text)])
- elif isinstance(obs, UserRejectObservation):
- text = 'OBSERVATION:\n' + truncate_content(obs.content, max_message_chars)
- text += '\n[Last action has been rejected by the user]'
- return Message(role='user', content=[TextContent(text=text)])
- else:
- # If an observation message is not returned, it will cause an error
- # when the LLM tries to return the next message
- raise ValueError(f'Unknown observation type: {type(obs)}')
- def reset(self) -> None:
- """Resets the CodeAct Agent."""
- super().reset()
- def step(self, state: State) -> Action:
- """Performs one step using the CodeAct Agent.
- This includes gathering info on previous steps and prompting the model to make a command to execute.
- Parameters:
- - state (State): used to get updated info
- Returns:
- - CmdRunAction(command) - bash command to run
- - IPythonRunCellAction(code) - IPython code to run
- - AgentDelegateAction(agent, inputs) - delegate action for (sub)task
- - MessageAction(content) - Message action to run (e.g. ask for clarification)
- - AgentFinishAction() - end the interaction
- """
- # if we're done, go back
- latest_user_message = state.history.get_last_user_message()
- if latest_user_message and latest_user_message.strip() == '/exit':
- return AgentFinishAction()
- # prepare what we want to send to the LLM
- messages = self._get_messages(state)
- params = {
- 'messages': self.llm.format_messages_for_llm(messages),
- 'stop': [
- '</execute_ipython>',
- '</execute_bash>',
- '</execute_browse>',
- ],
- }
- response = self.llm.completion(**params)
- return self.action_parser.parse(response)
- def _get_messages(self, state: State) -> list[Message]:
- messages: list[Message] = [
- Message(
- role='system',
- content=[
- TextContent(
- text=self.prompt_manager.system_message,
- cache_prompt=self.llm.is_caching_prompt_active(), # Cache system prompt
- )
- ],
- ),
- Message(
- role='user',
- content=[
- TextContent(
- text=self.prompt_manager.initial_user_message,
- cache_prompt=self.llm.is_caching_prompt_active(), # if the user asks the same query,
- )
- ],
- ),
- ]
- for event in state.history.get_events():
- # create a regular message from an event
- if isinstance(event, Action):
- message = self.get_action_message(event)
- elif isinstance(event, Observation):
- message = self.get_observation_message(event)
- else:
- raise ValueError(f'Unknown event type: {type(event)}')
- # add regular message
- if message:
- # handle error if the message is the SAME role as the previous message
- # litellm.exceptions.BadRequestError: litellm.BadRequestError: OpenAIException - Error code: 400 - {'detail': 'Only supports u/a/u/a/u...'}
- # there shouldn't be two consecutive messages from the same role
- if messages and messages[-1].role == message.role:
- messages[-1].content.extend(message.content)
- else:
- messages.append(message)
- # Add caching to the last 2 user messages
- if self.llm.is_caching_prompt_active():
- user_turns_processed = 0
- for message in reversed(messages):
- if message.role == 'user' and user_turns_processed < 2:
- message.content[
- -1
- ].cache_prompt = True # Last item inside the message content
- user_turns_processed += 1
- # The latest user message is important:
- # we want to remind the agent of the environment constraints
- latest_user_message = next(
- islice(
- (
- m
- for m in reversed(messages)
- if m.role == 'user'
- and any(isinstance(c, TextContent) for c in m.content)
- ),
- 1,
- ),
- None,
- )
- if latest_user_message:
- reminder_text = f'\n\nENVIRONMENT REMINDER: You have {state.max_iterations - state.iteration} turns left to complete the task. When finished reply with <finish></finish>.'
- latest_user_message.content.append(TextContent(text=reminder_text))
- return messages
|