| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298 |
- import asyncio
- import functools
- import os
- from typing import Any
- import pandas as pd
- from datasets import load_dataset
- from evaluation.benchmarks.mint.datatypes import TaskState
- from evaluation.benchmarks.mint.env import SimplifiedEnv
- from evaluation.benchmarks.mint.prompts import ToolPromptTemplate
- from evaluation.benchmarks.mint.tasks import Task
- from evaluation.utils.shared import (
- EvalMetadata,
- EvalOutput,
- compatibility_for_eval_history_pairs,
- make_metadata,
- prepare_dataset,
- reset_logger_for_multiprocessing,
- run_evaluation,
- )
- from openhands.controller.state.state import State
- from openhands.core.config import (
- AppConfig,
- SandboxConfig,
- get_llm_config_arg,
- get_parser,
- )
- from openhands.core.logger import openhands_logger as logger
- from openhands.core.main import create_runtime, run_controller
- from openhands.events.action import (
- Action,
- CmdRunAction,
- MessageAction,
- )
- from openhands.events.observation import CmdOutputObservation
- from openhands.runtime.base import Runtime
- from openhands.utils.async_utils import call_async_from_sync
- def codeact_user_response_mint(state: State, task: Task, task_config: dict[str, int]):
- logger.info(f'Gold reference: {task.reference}')
- logger.info(f'Task config: {task_config}')
- env = SimplifiedEnv(
- agent_state=state,
- task=task,
- task_config=task_config,
- )
- last_action = next(
- (event for event in reversed(state.history) if isinstance(event, Action)),
- None,
- )
- result_state: TaskState = env.step(last_action.message or '')
- state.extra_data['task_state'] = result_state
- if not result_state.latest_output:
- # Task is finished
- msg = '/exit'
- else:
- msg = result_state.latest_output['content']
- logger.info('User response:' + msg)
- return msg
- AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
- 'CodeActAgent': codeact_user_response_mint,
- }
- AGENT_CLS_TO_INST_SUFFIX = {
- 'CodeActAgent': 'IMPORTANT: When your answer is confirmed by the user to be correct, you can use the "finish" tool to finish the interaction.\n'
- }
- with open(os.path.join(os.path.dirname(__file__), 'requirements.txt'), 'r') as f:
- MINT_DEPENDENCIES = f.read().splitlines()
- def load_incontext_example(task_name: str, with_tool: bool = True):
- assert with_tool, 'NOT with_tool is not supported yet'
- subset = {
- 'gsm8k': 'reasoning',
- 'math': 'reasoning',
- 'mmlu': 'reasoning',
- 'theoremqa': 'reasoning',
- 'mbpp': 'mbpp',
- 'humaneval': 'humaneval',
- }[task_name]
- with open(
- os.path.join(
- os.path.dirname(__file__),
- 'tasks',
- 'in_context_examples',
- subset,
- 'with_tool.txt',
- ),
- 'r',
- ) as f:
- return f.read()
- def get_config(
- metadata: EvalMetadata,
- ) -> AppConfig:
- config = AppConfig(
- default_agent=metadata.agent_class,
- run_as_openhands=False,
- runtime='eventstream',
- max_iterations=metadata.max_iterations,
- sandbox=SandboxConfig(
- base_container_image='xingyaoww/od-eval-mint:v1.0',
- enable_auto_lint=True,
- use_host_network=False,
- runtime_extra_deps=f'$OH_INTERPRETER_PATH -m pip install {" ".join(MINT_DEPENDENCIES)}',
- ),
- # do not mount workspace
- workspace_base=None,
- workspace_mount_path=None,
- )
- config.set_llm_config(metadata.llm_config)
- return config
- def initialize_runtime(runtime: Runtime):
- """Initialize the runtime for the agent.
- This function is called before the runtime is used to run the agent.
- """
- logger.info(f"{'-' * 50} BEGIN Runtime Initialization Fn {'-' * 50}")
- obs: CmdOutputObservation
- # Set instance id
- action = CmdRunAction(command='mkdir -p /workspace')
- logger.info(action, extra={'msg_type': 'ACTION'})
- obs = runtime.run_action(action)
- assert obs.exit_code == 0
- action = CmdRunAction(command='cd /workspace')
- logger.info(action, extra={'msg_type': 'ACTION'})
- obs = runtime.run_action(action)
- assert obs.exit_code == 0
- logger.info(f"{'-' * 50} END Runtime Initialization Fn {'-' * 50}")
- def process_instance(
- instance: Any,
- metadata: EvalMetadata,
- reset_logger: bool = True,
- ):
- config = get_config(metadata)
- # Setup the logger properly, so you can run multi-processing to parallelize the evaluation
- if reset_logger:
- log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
- reset_logger_for_multiprocessing(logger, instance.instance_id, log_dir)
- else:
- logger.info(f'Starting evaluation for instance {instance.instance_id}.')
- # Prepare instruction
- assert metadata.details is not None
- instruction = ToolPromptTemplate(use_tool=True)(
- max_total_steps=metadata.max_iterations,
- max_propose_solution=metadata.details['max_propose_solution'],
- in_context_example=instance.in_context_example,
- task_prompt='Task:\n' + instance.prompt,
- )
- instruction += 'IMPORTANT: You should ONLY interact with the environment provided to you or provide the concise RESULT inside <solution> tag AND NEVER ASK FOR HUMAN HELP.\n'
- # NOTE: You can actually set slightly different instruction for different agents
- instruction += AGENT_CLS_TO_INST_SUFFIX[metadata.agent_class]
- # Here's how you can run the agent (similar to the `main` function) and get the final task state
- fake_user_response_fn = functools.partial(
- AGENT_CLS_TO_FAKE_USER_RESPONSE_FN[metadata.agent_class],
- task=instance,
- task_config={
- 'max_iterations': metadata.max_iterations,
- 'max_propose_solution': metadata.details['max_propose_solution'],
- },
- )
- runtime = create_runtime(config)
- call_async_from_sync(runtime.connect)
- initialize_runtime(runtime)
- state: State | None = asyncio.run(
- run_controller(
- config=config,
- initial_user_action=MessageAction(content=instruction),
- runtime=runtime,
- fake_user_response_fn=fake_user_response_fn,
- )
- )
- if state is None:
- raise ValueError('State should not be None.')
- task_state = None
- if 'task_state' in state.extra_data:
- task_state = state.extra_data['task_state']
- logger.info('Task state: ' + str(task_state.to_dict()))
- metrics = state.metrics.get() if state.metrics else None
- # history is now available as a stream of events, rather than list of pairs of (Action, Observation)
- # for compatibility with the existing output format, we can remake the pairs here
- # remove when it becomes unnecessary
- histories = compatibility_for_eval_history_pairs(state.history)
- # Save the output
- output = EvalOutput(
- instance_id=instance.instance_id,
- instance=instance.to_dict(),
- instruction=instruction,
- metadata=metadata,
- history=histories,
- metrics=metrics,
- error=state.last_error if state and state.last_error else None,
- test_result={
- 'success': task_state.success if task_state else False,
- },
- )
- return output
- if __name__ == '__main__':
- parser = get_parser()
- SUBSETS = [
- # Eurus subset: https://arxiv.org/abs/2404.02078
- 'math',
- # 'gsm8k',
- 'mmlu',
- 'theoremqa',
- 'mbpp',
- 'humaneval',
- ]
- parser.add_argument(
- '--subset',
- default='all',
- choices=SUBSETS + ['all'],
- type=str,
- help='subset of the dataset to be used',
- )
- parser.add_argument(
- '--max-propose-solution',
- default=2,
- type=int,
- help='maximum number of times the agent can propose a solution',
- )
- args, _ = parser.parse_known_args()
- # NOTE: It is preferable to load datasets from huggingface datasets and perform post-processing
- # so we don't need to manage file uploading to OpenHands's repo
- if args.subset == 'all':
- subsets = SUBSETS
- else:
- subsets = [args.subset]
- dataset_dfs = []
- for subset in subsets:
- in_context_example = load_incontext_example(subset)
- _cur_dataset = load_dataset(
- 'ryanhoangt/xingyaoww-mint-bench', name=subset, split='test'
- )
- logger.info(f'Loaded MINT - {subset} subset')
- _df = _cur_dataset.to_pandas().rename(columns={'id': 'instance_id'})
- _df['instance_id'] = _df['instance_id'].apply(lambda x: f'{subset}/{x}') # noqa
- _df['in_context_example'] = in_context_example
- dataset_dfs.append(_df)
- logger.info(f'Loaded {len(_df)} instances for subset: {subset}')
- dataset_df = pd.concat(dataset_dfs)
- logger.info(f'Loaded {len(dataset_df)} instances for subset: {subsets}')
- llm_config = None
- if args.llm_config:
- llm_config = get_llm_config_arg(args.llm_config)
- if llm_config is None:
- raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
- metadata = make_metadata(
- llm_config,
- f'MINT-{args.subset}',
- args.agent_cls,
- args.max_iterations,
- args.eval_note,
- args.eval_output_dir,
- details={'max_propose_solution': args.max_propose_solution},
- )
- output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
- instances = prepare_dataset(dataset_df, output_file, args.eval_n_limit)
- run_evaluation(
- instances, metadata, output_file, args.eval_num_workers, process_instance
- )
|