| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105 |
- import unittest
- from unittest.mock import patch, MagicMock
- import numpy as np
- from pdf2zh.doclayout import (
- OnnxModel,
- YoloResult,
- YoloBox,
- )
- class TestOnnxModel(unittest.TestCase):
- @patch("onnx.load")
- @patch("onnxruntime.InferenceSession")
- def setUp(self, mock_inference_session, mock_onnx_load):
- # Mock ONNX model metadata
- mock_model = MagicMock()
- mock_model.metadata_props = [
- MagicMock(key="stride", value="32"),
- MagicMock(key="names", value="['class1', 'class2']"),
- ]
- mock_onnx_load.return_value = mock_model
- # Initialize OnnxModel with a fake path
- self.model_path = "fake_model_path.onnx"
- self.model = OnnxModel(self.model_path)
- def test_stride_property(self):
- # Test that stride is correctly set from model metadata
- self.assertEqual(self.model.stride, 32)
- def test_resize_and_pad_image(self):
- # Create a dummy image (100x200)
- image = np.ones((100, 200, 3), dtype=np.uint8)
- resized_image = self.model.resize_and_pad_image(image, 1024)
- # Validate the output shape
- self.assertEqual(resized_image.shape[0], 512)
- self.assertEqual(resized_image.shape[1], 1024)
- # Check that padding has been added
- padded_height = resized_image.shape[0] - image.shape[0]
- padded_width = resized_image.shape[1] - image.shape[1]
- self.assertGreater(padded_height, 0)
- self.assertGreater(padded_width, 0)
- def test_scale_boxes(self):
- img1_shape = (1024, 1024) # Model input shape
- img0_shape = (500, 300) # Original image shape
- boxes = np.array([[512, 512, 768, 768]]) # Example bounding box
- scaled_boxes = self.model.scale_boxes(img1_shape, boxes, img0_shape)
- # Verify the output is scaled correctly
- self.assertEqual(scaled_boxes.shape, boxes.shape)
- self.assertTrue(np.all(scaled_boxes <= max(img0_shape)))
- def test_predict(self):
- # Mock model inference output
- mock_output = np.random.random((1, 300, 6))
- self.model.model.run.return_value = [mock_output]
- # Create a dummy image
- image = np.ones((500, 300, 3), dtype=np.uint8)
- results = self.model.predict(image)
- # Validate predictions
- self.assertEqual(len(results), 1)
- self.assertIsInstance(results[0], YoloResult)
- self.assertGreater(len(results[0].boxes), 0)
- self.assertIsInstance(results[0].boxes[0], YoloBox)
- class TestYoloResult(unittest.TestCase):
- def test_yolo_result(self):
- # Example prediction data
- boxes = [
- [100, 200, 300, 400, 0.9, 0],
- [50, 100, 150, 200, 0.8, 1],
- ]
- names = ["class1", "class2"]
- result = YoloResult(boxes, names)
- # Validate the number of boxes and their order by confidence
- self.assertEqual(len(result.boxes), 2)
- self.assertGreater(result.boxes[0].conf, result.boxes[1].conf)
- self.assertEqual(result.names, names)
- class TestYoloBox(unittest.TestCase):
- def test_yolo_box(self):
- # Example box data
- box_data = [100, 200, 300, 400, 0.9, 0]
- box = YoloBox(box_data)
- # Validate box properties
- self.assertEqual(box.xyxy, box_data[:4])
- self.assertEqual(box.conf, box_data[4])
- self.assertEqual(box.cls, box_data[5])
- if __name__ == "__main__":
- unittest.main()
|