|
|
@@ -0,0 +1,85 @@
|
|
|
+from dataclasses import dataclass
|
|
|
+from typing import Dict
|
|
|
+from typing import Iterable, Optional
|
|
|
+import time
|
|
|
+import numpy as np
|
|
|
+import torch
|
|
|
+import torch.nn.functional as F
|
|
|
+from torch import Tensor
|
|
|
+from torch import nn
|
|
|
+import whisper
|
|
|
+from funasr.utils.load_utils import load_audio_text_image_video, extract_fbank
|
|
|
+
|
|
|
+from funasr.register import tables
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+@tables.register("model_classes", "WhisperWarp")
|
|
|
+class WhisperWarp(nn.Module):
|
|
|
+ def __init__(self, whisper_dims: dict, **kwargs):
|
|
|
+ super().__init__()
|
|
|
+ hub = kwargs.get("hub", "funasr")
|
|
|
+ if hub == "openai":
|
|
|
+ init_param_path = kwargs.get("init_param_path", "large-v3")
|
|
|
+ model = whisper.load_model(init_param_path)
|
|
|
+ else:
|
|
|
+ dims = whisper.model.ModelDimensions(**whisper_dims)
|
|
|
+ model = whisper.model.Whisper(dims=dims)
|
|
|
+
|
|
|
+ self.model = model
|
|
|
+
|
|
|
+ def forward(self, ):
|
|
|
+ pass
|
|
|
+
|
|
|
+ def inference(self,
|
|
|
+ data_in,
|
|
|
+ data_lengths=None,
|
|
|
+ key: list = None,
|
|
|
+ tokenizer=None,
|
|
|
+ frontend=None,
|
|
|
+ **kwargs,
|
|
|
+ ):
|
|
|
+ if kwargs.get("batch_size", 1) > 1:
|
|
|
+ raise NotImplementedError("batch decoding is not implemented")
|
|
|
+
|
|
|
+ meta_data = {}
|
|
|
+ if isinstance(data_in, torch.Tensor) and kwargs.get("data_type", "sound") == "fbank": # fbank
|
|
|
+ speech, speech_lengths = data_in, data_lengths
|
|
|
+ if len(speech.shape) < 3:
|
|
|
+ speech = speech[None, :, :]
|
|
|
+ if speech_lengths is None:
|
|
|
+ speech_lengths = speech.shape[1]
|
|
|
+ else:
|
|
|
+ # extract fbank feats
|
|
|
+ time1 = time.perf_counter()
|
|
|
+ audio_sample_list = load_audio_text_image_video(data_in, fs=frontend.fs, audio_fs=kwargs.get("fs", 16000),
|
|
|
+ data_type=kwargs.get("data_type", "sound"),
|
|
|
+ tokenizer=tokenizer)
|
|
|
+ time2 = time.perf_counter()
|
|
|
+ meta_data["load_data"] = f"{time2 - time1:0.3f}"
|
|
|
+ speech, speech_lengths = extract_fbank(audio_sample_list, data_type=kwargs.get("data_type", "sound"),
|
|
|
+ frontend=frontend)
|
|
|
+ time3 = time.perf_counter()
|
|
|
+ meta_data["extract_feat"] = f"{time3 - time2:0.3f}"
|
|
|
+ frame_shift = frontend.frame_shift if hasattr(frontend, "frame_shift") else 10
|
|
|
+ lfr_n = frontend.lfr_n if hasattr(frontend, "lfr_n") else 1
|
|
|
+ meta_data["batch_data_time"] = speech_lengths.sum().item() * frame_shift * lfr_n / 1000
|
|
|
+
|
|
|
+ speech = speech.to(device=kwargs["device"])[0, :, :]
|
|
|
+ speech_lengths = speech_lengths.to(device=kwargs["device"])
|
|
|
+
|
|
|
+ # detect the spoken language
|
|
|
+ _, probs = self.model.detect_language(speech)
|
|
|
+ print(f"Detected language: {max(probs, key=probs.get)}")
|
|
|
+
|
|
|
+ # decode the audio
|
|
|
+ options = whisper.DecodingOptions(language=kwargs.get("language", None), fp16=False)
|
|
|
+ result = whisper.decode(self.model, speech, options)
|
|
|
+
|
|
|
+ results = []
|
|
|
+ result_i = {"key": key[0], "text": result.text}
|
|
|
+
|
|
|
+ results.append(result_i)
|
|
|
+
|
|
|
+ return results, meta_data
|
|
|
+
|