|
|
@@ -0,0 +1,353 @@
|
|
|
+import logging
|
|
|
+from typing import Union, Dict, List, Tuple, Optional
|
|
|
+
|
|
|
+import time
|
|
|
+import torch
|
|
|
+import torch.nn as nn
|
|
|
+import torch.nn.functional as F
|
|
|
+from torch.cuda.amp import autocast
|
|
|
+
|
|
|
+from funasr.losses.label_smoothing_loss import LabelSmoothingLoss
|
|
|
+from funasr.models.ctc.ctc import CTC
|
|
|
+from funasr.models.transformer.utils.add_sos_eos import add_sos_eos
|
|
|
+from funasr.metrics.compute_acc import th_accuracy, compute_accuracy
|
|
|
+# from funasr.models.e2e_asr_common import ErrorCalculator
|
|
|
+from funasr.train_utils.device_funcs import force_gatherable
|
|
|
+from funasr.utils.load_utils import load_audio_text_image_video, extract_fbank
|
|
|
+from funasr.utils import postprocess_utils
|
|
|
+from funasr.utils.datadir_writer import DatadirWriter
|
|
|
+from funasr.register import tables
|
|
|
+
|
|
|
+
|
|
|
+@tables.register("model_classes", "LLMASR")
|
|
|
+class LLMASR(nn.Module):
|
|
|
+ """ """
|
|
|
+
|
|
|
+ def __init__(
|
|
|
+ self,
|
|
|
+ specaug: str = None,
|
|
|
+ specaug_conf: dict = None,
|
|
|
+ normalize: str = None,
|
|
|
+ normalize_conf: dict = None,
|
|
|
+ encoder: str = None,
|
|
|
+ encoder_conf: dict = None,
|
|
|
+ decoder: str = None,
|
|
|
+ decoder_conf: dict = None,
|
|
|
+ ctc: str = None,
|
|
|
+ ctc_conf: dict = None,
|
|
|
+ ctc_weight: float = 0.5,
|
|
|
+ llm: str = None,
|
|
|
+ llm_conf: dict = None,
|
|
|
+ adaptor: str = None,
|
|
|
+ adaptor_conf: dict = None,
|
|
|
+ input_size: int = 80,
|
|
|
+ vocab_size: int = -1,
|
|
|
+ ignore_id: int = -1,
|
|
|
+ blank_id: int = 0,
|
|
|
+ sos: int = 1,
|
|
|
+ eos: int = 2,
|
|
|
+ lsm_weight: float = 0.0,
|
|
|
+ length_normalized_loss: bool = False,
|
|
|
+ report_cer: bool = True,
|
|
|
+ report_wer: bool = True,
|
|
|
+ sym_space: str = "<space>",
|
|
|
+ sym_blank: str = "<blank>",
|
|
|
+ # extract_feats_in_collect_stats: bool = True,
|
|
|
+ share_embedding: bool = False,
|
|
|
+ # preencoder: Optional[AbsPreEncoder] = None,
|
|
|
+ # postencoder: Optional[AbsPostEncoder] = None,
|
|
|
+ **kwargs,
|
|
|
+ ):
|
|
|
+
|
|
|
+ super().__init__()
|
|
|
+
|
|
|
+ if specaug is not None:
|
|
|
+ specaug_class = tables.specaug_classes.get(specaug)
|
|
|
+ specaug = specaug_class(**specaug_conf)
|
|
|
+ if normalize is not None:
|
|
|
+ normalize_class = tables.normalize_classes.get(normalize)
|
|
|
+ normalize = normalize_class(**normalize_conf)
|
|
|
+
|
|
|
+ # audio encoder
|
|
|
+ hub = encoder_conf.get("hub", None)
|
|
|
+ if hub == "funasr":
|
|
|
+ from funasr import AutoModel
|
|
|
+ from funasr.models.scama.utils import sequence_mask
|
|
|
+ init_param_path = encoder_conf.get("hub", "iic/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch")
|
|
|
+ model = AutoModel(model=init_param_path, model_revision="v2.0.4")
|
|
|
+ frontend = model.kwargs.get("frontend")
|
|
|
+ model.model.decoder = None
|
|
|
+
|
|
|
+ self.model = model.model
|
|
|
+ self.frontend = frontend
|
|
|
+ self.mask_fn = sequence_mask
|
|
|
+
|
|
|
+ elif hub == "hf":
|
|
|
+ pass
|
|
|
+ else:
|
|
|
+ encoder_class = tables.encoder_classes.get(encoder)
|
|
|
+ encoder = encoder_class(input_size=input_size, **encoder_conf)
|
|
|
+ encoder_output_size = encoder.output_size()
|
|
|
+
|
|
|
+ # llm
|
|
|
+ hub = llm_conf.get("hub", "hf")
|
|
|
+ self.llm = None
|
|
|
+ if hub == "hf":
|
|
|
+ from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
|
|
|
+
|
|
|
+ init_param_path = llm_conf.get("init_param_path", "vicuna-7b-v1.5")
|
|
|
+ model = AutoModelForCausalLM.from_pretrained(
|
|
|
+ init_param_path,
|
|
|
+ load_in_8bit=None,
|
|
|
+ device_map=None,
|
|
|
+ use_cache=None,
|
|
|
+ )
|
|
|
+ freeze_llm = llm_conf.get("freeze_llm", True)
|
|
|
+ if freeze_llm:
|
|
|
+ for name, param in model.named_parameters():
|
|
|
+ param.requires_grad = False
|
|
|
+ model.eval()
|
|
|
+ self.llm = model
|
|
|
+
|
|
|
+ # adaptor
|
|
|
+ adaptor_class = tables.adaptor_classes.get(adaptor)
|
|
|
+ adaptor = adaptor_class(**adaptor_conf)
|
|
|
+
|
|
|
+ self.adaptor = adaptor
|
|
|
+
|
|
|
+
|
|
|
+ self.blank_id = blank_id
|
|
|
+ self.sos = sos if sos is not None else vocab_size - 1
|
|
|
+ self.eos = eos if eos is not None else vocab_size - 1
|
|
|
+ self.vocab_size = vocab_size
|
|
|
+ self.ignore_id = ignore_id
|
|
|
+ self.specaug = specaug
|
|
|
+ self.normalize = normalize
|
|
|
+ self.encoder = encoder
|
|
|
+
|
|
|
+
|
|
|
+ self.criterion_att = LabelSmoothingLoss(
|
|
|
+ size=vocab_size,
|
|
|
+ padding_idx=ignore_id,
|
|
|
+ smoothing=lsm_weight,
|
|
|
+ normalize_length=length_normalized_loss,
|
|
|
+ )
|
|
|
+ #
|
|
|
+ # if report_cer or report_wer:
|
|
|
+ # self.error_calculator = ErrorCalculator(
|
|
|
+ # token_list, sym_space, sym_blank, report_cer, report_wer
|
|
|
+ # )
|
|
|
+ #
|
|
|
+ self.error_calculator = None
|
|
|
+
|
|
|
+ self.length_normalized_loss = length_normalized_loss
|
|
|
+ self.beam_search = None
|
|
|
+
|
|
|
+ def forward(
|
|
|
+ self,
|
|
|
+ speech: torch.Tensor,
|
|
|
+ speech_lengths: torch.Tensor,
|
|
|
+ text: torch.Tensor,
|
|
|
+ text_lengths: torch.Tensor,
|
|
|
+ input_ids: torch.Tensor,
|
|
|
+ attention_mask:torch.Tensor,
|
|
|
+ labels_ids:torch.Tensor,
|
|
|
+ label_mask: torch.Tensor,
|
|
|
+ audio_mask:torch.Tensor,
|
|
|
+ **kwargs,
|
|
|
+ ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
|
|
|
+ """Encoder + Decoder + Calc loss
|
|
|
+ Args:
|
|
|
+ speech: (Batch, Length, ...)
|
|
|
+ speech_lengths: (Batch, )
|
|
|
+ text: (Batch, Length)
|
|
|
+ text_lengths: (Batch,)
|
|
|
+ """
|
|
|
+ # import pdb;
|
|
|
+ # pdb.set_trace()
|
|
|
+ if len(text_lengths.size()) > 1:
|
|
|
+ text_lengths = text_lengths[:, 0]
|
|
|
+ if len(speech_lengths.size()) > 1:
|
|
|
+ speech_lengths = speech_lengths[:, 0]
|
|
|
+
|
|
|
+ batch_size = speech.shape[0]
|
|
|
+
|
|
|
+ # audio encoder
|
|
|
+ encoder_out, encoder_out_lens = self.encode(speech, speech_lengths, audio_mask)
|
|
|
+
|
|
|
+ # adaptor
|
|
|
+ encoder_out = self.adaptor(encoder_out)
|
|
|
+
|
|
|
+ if input_ids is not None:
|
|
|
+ input_ids[input_ids == -1] = 0
|
|
|
+ if hasattr(self.llm.model, "embed_tokens"):
|
|
|
+ inputs_embeds = self.llm.model.embed_tokens(input_ids)
|
|
|
+ elif hasattr(self.llm.model.model, "embed_tokens"):
|
|
|
+ inputs_embeds = self.llm.model.model.embed_tokens(input_ids)
|
|
|
+ else:
|
|
|
+ inputs_embeds = self.llm.model.model.model.embed_tokens(input_ids)
|
|
|
+
|
|
|
+ if audio_mask is not None:
|
|
|
+ batch_size, token_num, dims = inputs_embeds.shape
|
|
|
+ _, l, _ = encoder_out.shape
|
|
|
+ encoder_outs_pad = F.pad(encoder_out, (0, 0, token_num-l-1, 1, 0, 0), value=0.0)
|
|
|
+ inputs_embeds = encoder_outs_pad * audio_mask[:, :, None] + inputs_embeds * (~audio_mask[:, :, None])
|
|
|
+ inputs_embeds = F.pad(inputs_embeds[:, 1:, :], (0, 0, 0, 1, 0, 0), value=0.0)
|
|
|
+
|
|
|
+ model_outputs = self.llm(inputs_embeds=inputs_embeds, attention_mask=attention_mask, labels=labels)
|
|
|
+ loss = model_outputs.loss
|
|
|
+
|
|
|
+ acc_att = -1
|
|
|
+ if self.metric:
|
|
|
+ with torch.no_grad():
|
|
|
+ preds = torch.argmax(model_outputs.logits, -1)
|
|
|
+ acc_att = compute_accuracy(preds[:, :-1], labels_ids[:, 1:], ignore_label=-100)
|
|
|
+
|
|
|
+ stats = {}
|
|
|
+ # Collect Attn branch stats
|
|
|
+ stats["acc"] = acc_att.detach()
|
|
|
+
|
|
|
+ # force_gatherable: to-device and to-tensor if scalar for DataParallel
|
|
|
+ if self.length_normalized_loss:
|
|
|
+ batch_size = int((text_lengths + 1).sum())
|
|
|
+ loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
|
|
|
+ return loss, stats, weight
|
|
|
+
|
|
|
+ def encode(
|
|
|
+ self, speech: torch.Tensor, speech_lengths: torch.Tensor, **kwargs,
|
|
|
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
|
+
|
|
|
+ audio_mask = kwargs.get("audio_mask")
|
|
|
+ audio_token_lengths = audio_mask.sum(-1)
|
|
|
+
|
|
|
+ batch = {"speech": speech, "speech_lengths": speech_lengths}
|
|
|
+ enc, enc_lens = self.model.encode(**batch)
|
|
|
+ enc_mask = self.mask_fn(enc_lens, enc.size(1), device=enc.device)[:, None, :]
|
|
|
+ pre_acoustic_embeds, pre_token_length, _, _ = self.model.predictor(enc,
|
|
|
+ mask=enc_mask,
|
|
|
+ target_label_length=audio_token_lengths,
|
|
|
+ )
|
|
|
+
|
|
|
+ return pre_acoustic_embeds, pre_token_length
|
|
|
+
|
|
|
+ def _calc_att_loss(
|
|
|
+ self,
|
|
|
+ encoder_out: torch.Tensor,
|
|
|
+ encoder_out_lens: torch.Tensor,
|
|
|
+ ys_pad: torch.Tensor,
|
|
|
+ ys_pad_lens: torch.Tensor,
|
|
|
+ ):
|
|
|
+ ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id)
|
|
|
+ ys_in_lens = ys_pad_lens + 1
|
|
|
+
|
|
|
+ # 1. Forward decoder
|
|
|
+ decoder_out, _ = self.decoder(
|
|
|
+ encoder_out, encoder_out_lens, ys_in_pad, ys_in_lens
|
|
|
+ )
|
|
|
+
|
|
|
+ # 2. Compute attention loss
|
|
|
+ loss_att = self.criterion_att(decoder_out, ys_out_pad)
|
|
|
+ acc_att = th_accuracy(
|
|
|
+ decoder_out.view(-1, self.vocab_size),
|
|
|
+ ys_out_pad,
|
|
|
+ ignore_label=self.ignore_id,
|
|
|
+ )
|
|
|
+
|
|
|
+ # Compute cer/wer using attention-decoder
|
|
|
+ if self.training or self.error_calculator is None:
|
|
|
+ cer_att, wer_att = None, None
|
|
|
+ else:
|
|
|
+ ys_hat = decoder_out.argmax(dim=-1)
|
|
|
+ cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu())
|
|
|
+
|
|
|
+ return loss_att, acc_att, cer_att, wer_att
|
|
|
+
|
|
|
+
|
|
|
+ def inference(self,
|
|
|
+ data_in,
|
|
|
+ data_lengths=None,
|
|
|
+ key: list = None,
|
|
|
+ tokenizer=None,
|
|
|
+ frontend=None,
|
|
|
+ **kwargs,
|
|
|
+ ):
|
|
|
+
|
|
|
+ if kwargs.get("batch_size", 1) > 1:
|
|
|
+ raise NotImplementedError("batch decoding is not implemented")
|
|
|
+
|
|
|
+ # init beamsearch
|
|
|
+ if self.beam_search is None:
|
|
|
+ logging.info("enable beam_search")
|
|
|
+ self.init_beam_search(**kwargs)
|
|
|
+ self.nbest = kwargs.get("nbest", 1)
|
|
|
+
|
|
|
+ meta_data = {}
|
|
|
+ if isinstance(data_in, torch.Tensor) and kwargs.get("data_type", "sound") == "fbank": # fbank
|
|
|
+ speech, speech_lengths = data_in, data_lengths
|
|
|
+ if len(speech.shape) < 3:
|
|
|
+ speech = speech[None, :, :]
|
|
|
+ if speech_lengths is None:
|
|
|
+ speech_lengths = speech.shape[1]
|
|
|
+ else:
|
|
|
+ # extract fbank feats
|
|
|
+ time1 = time.perf_counter()
|
|
|
+ audio_sample_list = load_audio_text_image_video(data_in, fs=frontend.fs, audio_fs=kwargs.get("fs", 16000),
|
|
|
+ data_type=kwargs.get("data_type", "sound"),
|
|
|
+ tokenizer=tokenizer)
|
|
|
+ time2 = time.perf_counter()
|
|
|
+ meta_data["load_data"] = f"{time2 - time1:0.3f}"
|
|
|
+ speech, speech_lengths = extract_fbank(audio_sample_list, data_type=kwargs.get("data_type", "sound"),
|
|
|
+ frontend=frontend)
|
|
|
+ time3 = time.perf_counter()
|
|
|
+ meta_data["extract_feat"] = f"{time3 - time2:0.3f}"
|
|
|
+ meta_data["batch_data_time"] = speech_lengths.sum().item() * frontend.frame_shift * frontend.lfr_n / 1000
|
|
|
+
|
|
|
+ speech = speech.to(device=kwargs["device"])
|
|
|
+ speech_lengths = speech_lengths.to(device=kwargs["device"])
|
|
|
+ # Encoder
|
|
|
+ encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
|
|
|
+ if isinstance(encoder_out, tuple):
|
|
|
+ encoder_out = encoder_out[0]
|
|
|
+
|
|
|
+ # c. Passed the encoder result and the beam search
|
|
|
+ nbest_hyps = self.beam_search(
|
|
|
+ x=encoder_out[0], maxlenratio=kwargs.get("maxlenratio", 0.0), minlenratio=kwargs.get("minlenratio", 0.0)
|
|
|
+ )
|
|
|
+
|
|
|
+ nbest_hyps = nbest_hyps[: self.nbest]
|
|
|
+
|
|
|
+ results = []
|
|
|
+ b, n, d = encoder_out.size()
|
|
|
+ for i in range(b):
|
|
|
+
|
|
|
+ for nbest_idx, hyp in enumerate(nbest_hyps):
|
|
|
+ ibest_writer = None
|
|
|
+ if kwargs.get("output_dir") is not None:
|
|
|
+ if not hasattr(self, "writer"):
|
|
|
+ self.writer = DatadirWriter(kwargs.get("output_dir"))
|
|
|
+ ibest_writer = self.writer[f"{nbest_idx + 1}best_recog"]
|
|
|
+
|
|
|
+ # remove sos/eos and get results
|
|
|
+ last_pos = -1
|
|
|
+ if isinstance(hyp.yseq, list):
|
|
|
+ token_int = hyp.yseq[1:last_pos]
|
|
|
+ else:
|
|
|
+ token_int = hyp.yseq[1:last_pos].tolist()
|
|
|
+
|
|
|
+ # remove blank symbol id, which is assumed to be 0
|
|
|
+ token_int = list(filter(lambda x: x != self.eos and x != self.sos and x != self.blank_id, token_int))
|
|
|
+
|
|
|
+ # Change integer-ids to tokens
|
|
|
+ token = tokenizer.ids2tokens(token_int)
|
|
|
+ text = tokenizer.tokens2text(token)
|
|
|
+
|
|
|
+ text_postprocessed, _ = postprocess_utils.sentence_postprocess(token)
|
|
|
+ result_i = {"key": key[i], "token": token, "text": text_postprocessed}
|
|
|
+ results.append(result_i)
|
|
|
+
|
|
|
+ if ibest_writer is not None:
|
|
|
+ ibest_writer["token"][key[i]] = " ".join(token)
|
|
|
+ ibest_writer["text"][key[i]] = text_postprocessed
|
|
|
+
|
|
|
+ return results, meta_data
|
|
|
+
|