游雁 1 year ago
parent
commit
54b6ff5764

+ 0 - 0
funasr/datasets/llm_datasets/__init__.py


+ 130 - 0
funasr/datasets/llm_datasets/datasets.py

@@ -0,0 +1,130 @@
+import torch
+import copy
+
+from funasr.register import tables
+from funasr.utils.load_utils import extract_fbank, load_audio_text_image_video
+
+
+@tables.register("dataset_classes", "AudioLLMDataset")
+class AudioLLMDataset(torch.utils.data.Dataset):
+    """
+    AudioLLMDataset
+    """
+    def __init__(self,
+                 path,
+                 index_ds: str = None,
+                 frontend=None,
+                 tokenizer=None,
+                 int_pad_value: int = -1,
+                 float_pad_value: float = 0.0,
+                  **kwargs):
+        super().__init__()
+        index_ds_class = tables.index_ds_classes.get(index_ds)
+        self.index_ds = index_ds_class(path, **kwargs)
+        preprocessor_speech = kwargs.get("preprocessor_speech", None)
+        if preprocessor_speech:
+            preprocessor_speech_class = tables.preprocessor_classes.get(preprocessor_speech)
+            preprocessor_speech = preprocessor_speech_class(**kwargs.get("preprocessor_speech_conf"))
+        self.preprocessor_speech = preprocessor_speech
+        preprocessor_text = kwargs.get("preprocessor_text", None)
+        if preprocessor_text:
+            preprocessor_text_class = tables.preprocessor_classes.get(preprocessor_text)
+            preprocessor_text = preprocessor_text_class(**kwargs.get("preprocessor_text_conf"))
+        self.preprocessor_text = preprocessor_text
+        
+        self.frontend = frontend
+        self.fs = 16000 if frontend is None else frontend.fs
+        self.data_type = "sound"
+        self.tokenizer = tokenizer
+
+        self.int_pad_value = int_pad_value
+        self.float_pad_value = float_pad_value
+        self.prompt = kwargs.get("prompt", "Transcribe speech to text.")
+        self.prompt_pre = "USER: \nINSTRUCTION: {}\nINPUT: ".format(
+            self.prompt)  # "USER: \nINSTRUCTION: {}\nnINPUT: {}\nASSISTANT: "
+        self.prompt_af = ""
+    
+    def get_source_len(self, index):
+        item = self.index_ds[index]
+        return self.index_ds.get_source_len(item)
+    
+    def get_target_len(self, index):
+        item = self.index_ds[index]
+        return self.index_ds.get_target_len(item)
+    
+    def __len__(self):
+        return len(self.index_ds)
+    
+    def __getitem__(self, index):
+        item = self.index_ds[index]
+        # import pdb;
+        # pdb.set_trace()
+        source = item["source"]
+        data_src = load_audio_text_image_video(source, fs=self.fs)
+        if self.preprocessor_speech:
+            data_src = self.preprocessor_speech(data_src, fs=self.fs)
+        speech, speech_lengths = extract_fbank(data_src, data_type=self.data_type, frontend=self.frontend, is_final=True) # speech: [b, T, d]
+        speech = speech.sequeeze(0)
+
+        target = item["target"]
+        if self.preprocessor_text:
+            target = self.preprocessor_text(target)
+        
+        
+        prompt_ids_pre = self.tokenizer.encode(self.prompt_pre) # [bos,prompt]
+        prompt_pre_length = len(prompt_ids_pre)
+        
+        prompt_input = "{}{}".format(self.prompt_pre, target)
+        prompt_input_ids = self.tokenizer.encode(prompt_input)
+        audio_length = len(prompt_input_ids) - prompt_pre_length
+        input_ids = prompt_input_ids + [self.tokenizer.pad_token_id]
+        input_ids = torch.tensor(input_ids, dtype=torch.int64) #[bos, prompt, input, pad]
+        input_ids[prompt_pre_length:] = -1  # [bos, prompt,-1,-1]
+        attention_mask = input_ids.ge(-1) # [true, true, true, true], length mask
+
+        prompt_answer = "{}{}".format(self.prompt_pre, target)
+        prompt_answer_ids = self.tokenizer.encode(prompt_answer)
+        answer_length = len(prompt_answer_ids) - prompt_pre_length
+        labels_ids = copy.deepcopy(prompt_input_ids) + [self.tokenizer.eos_token_id]
+        labels_ids = torch.tensor(labels_ids, dtype=torch.int64)  # [bos, prompt, input, eos]
+        labels_ids[:prompt_pre_length] = -1  # [-1, -1, input, eos]
+        label_mask = labels_ids.ge(0)  # [False,False,True,True]
+        labels_ids[~label_mask] = self.IGNORE_INDEX  # [-100,-100,input,eos]
+        
+        audio_mask = [0] * prompt_pre_length + [1] * audio_length
+        torch.tensor(audio_mask, dtype=torch.float32)
+        
+        ids = self.tokenizer.encode(target)
+        text = torch.tensor(ids, dtype=torch.int64)
+        text_lengths = torch.tensor([len(ids)], dtype=torch.int32)
+        
+        return {"speech": speech,
+                "speech_lengths": speech_lengths,
+                "text": text,
+                "text_lengths": text_lengths,
+                "input_ids": input_ids,
+                "attention_mask": attention_mask,
+                "labels_ids": labels_ids,
+                "label_mask": label_mask,
+                "audio_mask": audio_mask,
+                }
+    
+    
+    def collator(self, samples: list=None):
+        outputs = {}
+        for sample in samples:
+            for key in sample.keys():
+                if key not in outputs:
+                    outputs[key] = []
+                outputs[key].append(sample[key])
+
+        for key, data_list in outputs.items():
+            if isinstance(data_list[0], torch.Tensor):
+                if data_list[0].dtype == torch.int64:
+    
+                    pad_value = self.int_pad_value
+                else:
+                    pad_value = self.float_pad_value
+                
+                outputs[key] = torch.nn.utils.rnn.pad_sequence(data_list, batch_first=True, padding_value=pad_value)
+        return outputs

+ 51 - 0
funasr/datasets/llm_datasets/preprocessor.py

@@ -0,0 +1,51 @@
+import os
+import json
+import torch
+import logging
+import concurrent.futures
+import librosa
+import torch.distributed as dist
+from typing import Collection
+import torch
+import torchaudio
+from torch import nn
+import random
+import re
+from funasr.tokenizer.cleaner import TextCleaner
+from funasr.register import tables
+
+
+@tables.register("preprocessor_classes", "SpeechPreprocessSpeedPerturb")
+class SpeechPreprocessSpeedPerturb(nn.Module):
+	def __init__(self, speed_perturb: list=None, **kwargs):
+		super().__init__()
+		self.speed_perturb = speed_perturb
+		
+	def forward(self, waveform, fs, **kwargs):
+		if self.speed_perturb is None:
+			return waveform
+		speed = random.choice(self.speed_perturb)
+		if speed != 1.0:
+			if not isinstance(waveform, torch.Tensor):
+				waveform = torch.tensor(waveform)
+			waveform, _ = torchaudio.sox_effects.apply_effects_tensor(
+				waveform.view(1, -1), fs, [['speed', str(speed)], ['rate', str(fs)]])
+			waveform = waveform.view(-1)
+			
+		return waveform
+
+
+@tables.register("preprocessor_classes", "TextPreprocessSegDict")
+class TextPreprocessSegDict(nn.Module):
+	def __init__(self, seg_dict: str = None,
+	             text_cleaner: Collection[str] = None,
+	             split_with_space: bool = False,
+	             **kwargs):
+		super().__init__()
+		
+		self.text_cleaner = TextCleaner(text_cleaner)
+	
+	def forward(self, text, **kwargs):
+		text = self.text_cleaner(text)
+		
+		return text

+ 277 - 0
funasr/datasets/llm_datasets/samplers.py

@@ -0,0 +1,277 @@
+import torch
+import numpy as np
+import logging
+import torch.distributed as dist
+
+from funasr.register import tables
+
+
+@tables.register("batch_sampler_classes", "DynamicBatchLocalShuffleSampler")
+class BatchSampler(torch.utils.data.BatchSampler):
+    
+    def __init__(self, dataset,
+                 batch_type: str = "example",
+                 batch_size: int = 100,
+                 buffer_size: int = 30,
+                 drop_last: bool = False,
+                 shuffle: bool = True,
+                 is_training: bool = True,
+                 **kwargs):
+        
+        self.drop_last = drop_last
+        self.pre_idx = -1
+        self.dataset = dataset
+        self.total_samples = len(dataset)
+        self.batch_type = batch_type
+        self.batch_size = int(batch_size)
+        self.buffer_size = buffer_size
+        self.max_token_length = kwargs.get("max_token_length", 5000)
+        self.shuffle_idx = np.arange(self.total_samples)
+        self.shuffle = shuffle and is_training
+        self.length_scale_source = kwargs.get("length_scale_source", 1.0)
+        
+    
+    def __len__(self):
+        return (self.total_samples-1) // self.batch_size + 1
+    
+    def set_epoch(self, epoch):
+        np.random.seed(epoch)
+    
+    def __iter__(self):
+        
+        if self.shuffle:
+            np.random.shuffle(self.shuffle_idx)
+        
+        batch = []
+        max_token = 0
+        num_sample = 0
+        
+        iter_num = (self.total_samples - 1) // self.buffer_size + 1
+        # print("iter_num: ", iter_num)
+        for iter in range(self.pre_idx + 1, iter_num):
+            datalen_with_index = []
+            for i in range(self.buffer_size):
+                idx = iter * self.buffer_size + i
+                if idx >= self.total_samples:
+                    continue
+                
+                idx_map = self.shuffle_idx[idx]
+                # prompt = self.dataset.indexed_dataset[idx_map]["prompt"]
+                target_len = self.dataset.get_target_len(idx_map) if self.batch_type == 'length' else 0.0
+                source_len = self.dataset.get_source_len(idx_map) / self.length_scale_source
+                sample_len_cur = source_len + target_len
+                
+                
+                datalen_with_index.append([idx, sample_len_cur])
+            
+            datalen_with_index_sort = sorted(datalen_with_index, key=lambda x: x[1])
+            for item in datalen_with_index_sort:
+                idx, sample_len_cur_raw = item
+                if sample_len_cur_raw > self.max_token_length:
+                    continue
+                
+                max_token_cur = max(max_token, sample_len_cur_raw)
+                max_token_padding = 1 + num_sample
+                if self.batch_type != 'example':
+                    max_token_padding *= max_token_cur
+                if max_token_padding <= self.batch_size:
+                    batch.append(idx)
+                    max_token = max_token_cur
+                    num_sample += 1
+                else:
+                    yield batch
+                    batch = [idx]
+                    max_token = sample_len_cur_raw
+                    num_sample = 1
+
+
+@tables.register("batch_sampler_classes", "BatchSampler")
+@tables.register("batch_sampler_classes", "RankFullLocalShuffleBatchSampler")
+class RankFullLocalShuffleBatchSampler(torch.utils.data.BatchSampler):
+    
+    def __init__(self, dataset,
+                 batch_type: str = "example",
+                 batch_size: int = 100,
+                 buffer_size: int = 30,
+                 drop_last: bool = True,
+                 shuffle: bool = True,
+                 is_training: bool = True,
+                 **kwargs):
+        
+        self.drop_last = drop_last
+        self.pre_idx = -1
+        self.dataset = dataset
+        self.total_samples = len(dataset)
+        self.batch_type = batch_type
+        self.batch_size = int(batch_size)
+        self.buffer_size = buffer_size
+        self.max_token_length = kwargs.get("max_token_length", 1500)
+        self.shuffle_idx = np.arange(self.total_samples)
+        self.shuffle = shuffle and is_training
+        self.length_scale_source = kwargs.get("length_scale_source", 1.0)
+        
+        try:
+            rank = dist.get_rank()
+            world_size = dist.get_world_size()
+        except:
+            rank = 0
+            world_size = 1
+        self.rank = rank
+        self.world_size = world_size
+        
+    def __len__(self):
+        return (self.total_samples - 1) // (self.batch_size * self.world_size) + 1
+    
+    def set_epoch(self, epoch):
+        np.random.seed(epoch)
+    
+    def __iter__(self):
+    
+        batch_size_total = self.batch_size * self.world_size
+        
+        if self.shuffle:
+            np.random.shuffle(self.shuffle_idx)
+        
+        batch = []
+        max_token = 0
+        num_sample = 0
+        
+        iter_num = (self.total_samples - 1) // self.buffer_size + 1
+        # print("iter_num: ", iter_num)
+        for iter in range(self.pre_idx + 1, iter_num):
+            # if iter == iter_num -1 and self.drop_last:
+            #     continue
+            datalen_with_index = []
+            for i in range(self.buffer_size):
+                idx = iter * self.buffer_size + i
+                if idx >= self.total_samples:
+                    continue
+                
+                idx_map = self.shuffle_idx[idx]
+                # prompt = self.dataset.indexed_dataset[idx_map]["prompt"]
+                
+                source_len = self.dataset.get_source_len(idx_map) / self.length_scale_source
+                target_len = self.dataset.get_target_len(idx_map) if self.batch_type == 'length' else 0.0
+                sample_len_cur = source_len + target_len
+                
+                datalen_with_index.append([idx, sample_len_cur])
+            
+            datalen_with_index_sort = sorted(datalen_with_index, key=lambda x: x[1])
+            for item in datalen_with_index_sort:
+                idx, sample_len_cur_raw = item
+                if sample_len_cur_raw > self.max_token_length:
+                    continue
+
+                max_token_cur = max(max_token, sample_len_cur_raw)
+                max_token_padding = 1 + num_sample
+                # if self.batch_type != 'example':
+                #     max_token_padding *= max_token_cur
+                if max_token_padding <= batch_size_total:
+                    batch.append(idx)
+                    max_token = max_token_cur
+                    num_sample += 1
+                else:
+                    batch_rank = batch[self.rank*self.batch_size: (self.rank+1)*self.batch_size]
+                    yield batch_rank
+                    batch = [idx]
+                    max_token = sample_len_cur_raw
+                    num_sample = 1
+
+
+@tables.register("batch_sampler_classes", "RankFullLocalShuffleDynamicBatchSampler")
+class RankFullLocalShuffleDynamicBatchSampler(torch.utils.data.BatchSampler):
+    
+    def __init__(self, dataset,
+                 batch_type: str = "example",
+                 batch_size: int = 100,
+                 buffer_size: int = 30,
+                 drop_last: bool = True,
+                 shuffle: bool = True,
+                 is_training: bool = True,
+                 **kwargs):
+        
+        self.drop_last = drop_last
+        self.pre_idx = -1
+        self.dataset = dataset
+        self.total_samples = len(dataset)
+        self.batch_type = batch_type
+        self.batch_size = int(batch_size)
+        self.buffer_size = buffer_size
+        self.max_token_length = kwargs.get("max_token_length", 1500)
+        self.shuffle_idx = np.arange(self.total_samples)
+        self.shuffle = shuffle and is_training
+        self.length_scale_source = kwargs.get("length_scale_source", 1.0)
+        
+        try:
+            rank = dist.get_rank()
+            world_size = dist.get_world_size()
+        except:
+            rank = 0
+            world_size = 1
+        self.rank = rank
+        self.world_size = world_size
+    
+    def __len__(self):
+        return (self.total_samples - 1) // (self.batch_size * self.world_size) + 1
+    
+    def set_epoch(self, epoch):
+        np.random.seed(epoch)
+    
+    def __iter__(self):
+        
+        batch_size_total = self.batch_size * self.world_size
+        if self.shuffle:
+            np.random.shuffle(self.shuffle_idx)
+        
+        batch_list_all_rank = []
+        batch_list_cur = []
+        max_token = 0
+        num_sample = 0
+        
+        iter_num = (self.total_samples - 1) // self.buffer_size + 1
+        # print("iter_num: ", iter_num)
+        for iter in range(self.pre_idx + 1, iter_num):
+            # if iter == iter_num - 1 and self.drop_last:
+            #     continue
+            datalen_with_index = []
+            for i in range(self.buffer_size):
+                idx = iter * self.buffer_size + i
+                if idx >= self.total_samples:
+                    continue
+                
+                idx_map = self.shuffle_idx[idx]
+                # prompt = self.dataset.indexed_dataset[idx_map]["prompt"]
+                
+                source_len = self.dataset.get_source_len(idx_map) / self.length_scale_source
+                target_len = self.dataset.get_target_len(idx_map) if self.batch_type == 'length' else 0.0
+                sample_len_cur = source_len + target_len
+                
+                datalen_with_index.append([idx, sample_len_cur])
+            
+            datalen_with_index_sort = sorted(datalen_with_index, key=lambda x: x[1])
+            for ii, item in enumerate(datalen_with_index_sort):
+                is_last_batch = iter == iter_num - 1 and ii == len(datalen_with_index_sort)
+                idx, sample_len_cur_raw = item
+                if sample_len_cur_raw > self.max_token_length:
+                    continue
+                
+                max_token_cur = max(max_token, sample_len_cur_raw)
+                max_token_padding = 1 + num_sample
+                
+                if self.batch_type != 'example':
+                    max_token_padding *= max_token_cur
+                if len(batch_list_all_rank) < self.world_size:
+                    
+                    if max_token_padding <= self.batch_size:
+                        batch_list_cur.append(idx)
+                        max_token = max_token_cur
+                        num_sample += 1
+                    else:
+                        batch_list_all_rank.append(batch_list_cur)
+                        batch_list_cur = []
+                else:
+                    batch_rank = batch_list_all_rank[self.rank]
+                    yield batch_rank
+                    batch_list_all_rank = [idx]
+                    max_token = sample_len_cur_raw
+                    num_sample = 1

+ 96 - 0
funasr/datasets/llm_datasets/scp2jsonl.py

@@ -0,0 +1,96 @@
+import os
+import json
+import torch
+import logging
+import hydra
+from omegaconf import DictConfig, OmegaConf
+import concurrent.futures
+import librosa
+import torch.distributed as dist
+
+
+
+def gen_jsonl_from_wav_text_list(path, data_type_list=("source", "target"), jsonl_file_out:str=None, **kwargs):
+    try:
+        rank = dist.get_rank()
+        world_size = dist.get_world_size()
+    except:
+        rank = 0
+        world_size = 1
+
+    cpu_cores = os.cpu_count() or 1
+    print(f"convert wav.scp text to jsonl, ncpu: {cpu_cores}")
+    if rank == 0:
+        json_dict = {}
+        for data_type, data_file in zip(data_type_list, path):
+            json_dict[data_type] = {}
+            with open(data_file, "r") as f:
+                
+                data_file_lists = f.readlines()
+                lines_for_each_th = (len(data_file_lists)-1)//cpu_cores + 1
+                task_num = cpu_cores if len(data_file_lists) > cpu_cores else 1
+                with concurrent.futures.ThreadPoolExecutor(max_workers=cpu_cores) as executor:
+
+                    futures = [executor.submit(parse_context_length, data_file_lists[i*lines_for_each_th:(i+1)*lines_for_each_th], data_type) for i in range(task_num)]
+    
+                    for future in concurrent.futures.as_completed(futures):
+                        
+                        json_dict[data_type].update(future.result())
+            # print(json_dict)
+        
+        with open(jsonl_file_out, "w") as f:
+            for key in json_dict[data_type_list[0]].keys():
+                jsonl_line = {"key": key}
+                for data_file in data_type_list:
+                    jsonl_line.update(json_dict[data_file][key])
+                jsonl_line = json.dumps(jsonl_line, ensure_ascii=False)
+                f.write(jsonl_line+"\n")
+                f.flush()
+                
+    else:
+        pass
+        
+    if world_size > 1:
+        dist.barrier()
+    
+    
+def parse_context_length(data_list: list, data_type: str):
+    
+    res = {}
+    for i, line in enumerate(data_list):
+        key, line = line.strip().split(maxsplit=1)
+        line = line.strip()
+        if os.path.exists(line):
+            waveform, _ = librosa.load(line, sr=16000)
+            sample_num = len(waveform)
+            context_len = int(sample_num//16000*1000/10)
+        else:
+            context_len = len(line.split()) if " " in line else len(line)
+        res[key] = {data_type: line, f"{data_type}_len": context_len}
+    return res
+    
+
+@hydra.main(config_name=None, version_base=None)
+def main_hydra(cfg: DictConfig):
+ 
+    kwargs = OmegaConf.to_container(cfg, resolve=True)
+
+    scp_file_list = kwargs.get("scp_file_list", ("/Users/zhifu/funasr1.0/test_local/wav.scp", "/Users/zhifu/funasr1.0/test_local/text.txt"))
+    if isinstance(scp_file_list, str):
+        scp_file_list = eval(scp_file_list)
+    data_type_list = kwargs.get("data_type_list", ("source", "target"))
+    jsonl_file_out = kwargs.get("jsonl_file_out", "/Users/zhifu/funasr1.0/test_local/audio_datasets.jsonl")
+    gen_jsonl_from_wav_text_list(scp_file_list, data_type_list=data_type_list, jsonl_file_out=jsonl_file_out)
+    
+
+"""
+python -m funasr.datasets.audio_datasets.scp2jsonl \
+++scp_file_list='["/Users/zhifu/funasr1.0/test_local/wav.scp", "/Users/zhifu/funasr1.0/test_local/text.txt"]' \
+++data_type_list='["source", "target"]' \
+++jsonl_file_out=/Users/zhifu/funasr1.0/test_local/audio_datasets.jsonl
+"""
+
+if __name__ == "__main__":
+    main_hydra()
+
+    

+ 19 - 0
funasr/metrics/compute_acc.py

@@ -21,3 +21,22 @@ def th_accuracy(pad_outputs, pad_targets, ignore_label):
     )
     denominator = torch.sum(mask)
     return float(numerator) / float(denominator)
+
+def compute_accuracy(pad_outputs, pad_targets, ignore_label):
+    """Calculate accuracy.
+
+    Args:
+        pad_outputs (LongTensor): Prediction tensors (B, Lmax).
+        pad_targets (LongTensor): Target label tensors (B, Lmax).
+        ignore_label (int): Ignore label id.
+
+    Returns:
+        float: Accuracy value (0.0 - 1.0).
+
+    """
+    mask = pad_targets != ignore_label
+    numerator = torch.sum(
+        pad_outputs.masked_select(mask) == pad_targets.masked_select(mask)
+    )
+    denominator = torch.sum(mask)
+    return numerator.float() / denominator.float() #(FIX:MZY):return torch.Tensor type

+ 0 - 0
funasr/models/llm_asr/__init__.py


+ 29 - 0
funasr/models/llm_asr/adaptor.py

@@ -0,0 +1,29 @@
+import torch
+import torch.nn as nn
+
+from funasr.register import tables
+
+@tables.register("adaptor_classes", "Linear")
+class Linear(nn.Module):
+    def __init__(self, downsample_rate, encoder_dim, llm_dim, ffn_dim: int = 2048, **kwargs):
+        super().__init__()
+        self.k = downsample_rate
+        self.encoder_dim = encoder_dim
+        self.llm_dim = llm_dim
+        self.linear1 = nn.Linear(self.encoder_dim * self.k, ffn_dim)
+        self.relu = nn.ReLU()
+        self.linear2 = nn.Linear(ffn_dim, self.llm_dim)
+
+    def forward(self, x):
+        batch_size, seq_len, dim = x.size()
+        num_frames_to_discard = seq_len % self.k
+        if num_frames_to_discard > 0:
+            x = x[:, :-num_frames_to_discard, :]
+        seq_len = x.size(1)
+        
+        x = x.contiguous()
+        x = x.view(batch_size, seq_len // self.k, dim * self.k)
+        x = self.linear1(x)
+        x = self.relu(x)
+        x = self.linear2(x)
+        return x

+ 353 - 0
funasr/models/llm_asr/model.py

@@ -0,0 +1,353 @@
+import logging
+from typing import Union, Dict, List, Tuple, Optional
+
+import time
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+from torch.cuda.amp import autocast
+
+from funasr.losses.label_smoothing_loss import LabelSmoothingLoss
+from funasr.models.ctc.ctc import CTC
+from funasr.models.transformer.utils.add_sos_eos import add_sos_eos
+from funasr.metrics.compute_acc import th_accuracy, compute_accuracy
+# from funasr.models.e2e_asr_common import ErrorCalculator
+from funasr.train_utils.device_funcs import force_gatherable
+from funasr.utils.load_utils import load_audio_text_image_video, extract_fbank
+from funasr.utils import postprocess_utils
+from funasr.utils.datadir_writer import DatadirWriter
+from funasr.register import tables
+
+
+@tables.register("model_classes", "LLMASR")
+class LLMASR(nn.Module):
+    """ """
+    
+    def __init__(
+        self,
+        specaug: str = None,
+        specaug_conf: dict = None,
+        normalize: str = None,
+        normalize_conf: dict = None,
+        encoder: str = None,
+        encoder_conf: dict = None,
+        decoder: str = None,
+        decoder_conf: dict = None,
+        ctc: str = None,
+        ctc_conf: dict = None,
+        ctc_weight: float = 0.5,
+        llm: str = None,
+        llm_conf: dict = None,
+        adaptor: str = None,
+        adaptor_conf: dict = None,
+        input_size: int = 80,
+        vocab_size: int = -1,
+        ignore_id: int = -1,
+        blank_id: int = 0,
+        sos: int = 1,
+        eos: int = 2,
+        lsm_weight: float = 0.0,
+        length_normalized_loss: bool = False,
+        report_cer: bool = True,
+        report_wer: bool = True,
+        sym_space: str = "<space>",
+        sym_blank: str = "<blank>",
+        # extract_feats_in_collect_stats: bool = True,
+        share_embedding: bool = False,
+        # preencoder: Optional[AbsPreEncoder] = None,
+        # postencoder: Optional[AbsPostEncoder] = None,
+        **kwargs,
+    ):
+        
+        super().__init__()
+        
+        if specaug is not None:
+            specaug_class = tables.specaug_classes.get(specaug)
+            specaug = specaug_class(**specaug_conf)
+        if normalize is not None:
+            normalize_class = tables.normalize_classes.get(normalize)
+            normalize = normalize_class(**normalize_conf)
+        
+        # audio encoder
+        hub = encoder_conf.get("hub", None)
+        if hub == "funasr":
+            from funasr import AutoModel
+            from funasr.models.scama.utils import sequence_mask
+            init_param_path = encoder_conf.get("hub", "iic/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch")
+            model = AutoModel(model=init_param_path, model_revision="v2.0.4")
+            frontend = model.kwargs.get("frontend")
+            model.model.decoder = None
+            
+            self.model = model.model
+            self.frontend = frontend
+            self.mask_fn = sequence_mask
+            
+        elif hub == "hf":
+            pass
+        else:
+            encoder_class = tables.encoder_classes.get(encoder)
+            encoder = encoder_class(input_size=input_size, **encoder_conf)
+            encoder_output_size = encoder.output_size()
+
+        # llm
+        hub = llm_conf.get("hub", "hf")
+        self.llm = None
+        if hub == "hf":
+            from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
+
+            init_param_path = llm_conf.get("init_param_path", "vicuna-7b-v1.5")
+            model = AutoModelForCausalLM.from_pretrained(
+                init_param_path,
+                load_in_8bit=None,
+                device_map=None,
+                use_cache=None,
+            )
+            freeze_llm = llm_conf.get("freeze_llm", True)
+            if freeze_llm:
+                for name, param in model.named_parameters():
+                    param.requires_grad = False
+                model.eval()
+            self.llm = model
+        
+        # adaptor
+        adaptor_class = tables.adaptor_classes.get(adaptor)
+        adaptor = adaptor_class(**adaptor_conf)
+        
+        self.adaptor = adaptor
+        
+        
+        self.blank_id = blank_id
+        self.sos = sos if sos is not None else vocab_size - 1
+        self.eos = eos if eos is not None else vocab_size - 1
+        self.vocab_size = vocab_size
+        self.ignore_id = ignore_id
+        self.specaug = specaug
+        self.normalize = normalize
+        self.encoder = encoder
+
+
+        self.criterion_att = LabelSmoothingLoss(
+            size=vocab_size,
+            padding_idx=ignore_id,
+            smoothing=lsm_weight,
+            normalize_length=length_normalized_loss,
+        )
+        #
+        # if report_cer or report_wer:
+        #     self.error_calculator = ErrorCalculator(
+        #         token_list, sym_space, sym_blank, report_cer, report_wer
+        #     )
+        #
+        self.error_calculator = None
+
+        self.length_normalized_loss = length_normalized_loss
+        self.beam_search = None
+    
+    def forward(
+        self,
+        speech: torch.Tensor,
+        speech_lengths: torch.Tensor,
+        text: torch.Tensor,
+        text_lengths: torch.Tensor,
+        input_ids: torch.Tensor,
+        attention_mask:torch.Tensor,
+        labels_ids:torch.Tensor,
+        label_mask: torch.Tensor,
+        audio_mask:torch.Tensor,
+        **kwargs,
+    ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
+        """Encoder + Decoder + Calc loss
+        Args:
+                speech: (Batch, Length, ...)
+                speech_lengths: (Batch, )
+                text: (Batch, Length)
+                text_lengths: (Batch,)
+        """
+        # import pdb;
+        # pdb.set_trace()
+        if len(text_lengths.size()) > 1:
+            text_lengths = text_lengths[:, 0]
+        if len(speech_lengths.size()) > 1:
+            speech_lengths = speech_lengths[:, 0]
+        
+        batch_size = speech.shape[0]
+        
+        # audio encoder
+        encoder_out, encoder_out_lens = self.encode(speech, speech_lengths, audio_mask)
+        
+        # adaptor
+        encoder_out = self.adaptor(encoder_out)
+
+        if input_ids is not None:
+            input_ids[input_ids == -1] = 0
+            if hasattr(self.llm.model, "embed_tokens"):
+                inputs_embeds = self.llm.model.embed_tokens(input_ids)
+            elif hasattr(self.llm.model.model, "embed_tokens"):
+                inputs_embeds = self.llm.model.model.embed_tokens(input_ids)
+            else:
+                inputs_embeds = self.llm.model.model.model.embed_tokens(input_ids)
+
+            if audio_mask is not None:
+                batch_size, token_num, dims = inputs_embeds.shape
+                _, l, _ = encoder_out.shape
+                encoder_outs_pad = F.pad(encoder_out, (0, 0, token_num-l-1, 1, 0, 0), value=0.0)
+                inputs_embeds = encoder_outs_pad * audio_mask[:, :, None] + inputs_embeds * (~audio_mask[:, :, None])
+                inputs_embeds = F.pad(inputs_embeds[:, 1:, :], (0, 0, 0, 1, 0, 0), value=0.0)
+
+        model_outputs = self.llm(inputs_embeds=inputs_embeds, attention_mask=attention_mask, labels=labels)
+        loss = model_outputs.loss
+
+        acc_att = -1
+        if self.metric:
+            with torch.no_grad():
+                preds = torch.argmax(model_outputs.logits, -1)
+                acc_att = compute_accuracy(preds[:, :-1], labels_ids[:, 1:], ignore_label=-100)
+
+        stats = {}
+        # Collect Attn branch stats
+        stats["acc"] = acc_att.detach()
+
+        # force_gatherable: to-device and to-tensor if scalar for DataParallel
+        if self.length_normalized_loss:
+            batch_size = int((text_lengths + 1).sum())
+        loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
+        return loss, stats, weight
+    
+    def encode(
+        self, speech: torch.Tensor, speech_lengths: torch.Tensor, **kwargs,
+    ) -> Tuple[torch.Tensor, torch.Tensor]:
+    
+        audio_mask = kwargs.get("audio_mask")
+        audio_token_lengths = audio_mask.sum(-1)
+
+        batch = {"speech": speech, "speech_lengths": speech_lengths}
+        enc, enc_lens = self.model.encode(**batch)
+        enc_mask = self.mask_fn(enc_lens, enc.size(1), device=enc.device)[:, None, :]
+        pre_acoustic_embeds, pre_token_length, _, _ = self.model.predictor(enc,
+                                                                           mask=enc_mask,
+                                                                           target_label_length=audio_token_lengths,
+                                                                           )
+
+        return pre_acoustic_embeds, pre_token_length
+    
+    def _calc_att_loss(
+        self,
+        encoder_out: torch.Tensor,
+        encoder_out_lens: torch.Tensor,
+        ys_pad: torch.Tensor,
+        ys_pad_lens: torch.Tensor,
+    ):
+        ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id)
+        ys_in_lens = ys_pad_lens + 1
+        
+        # 1. Forward decoder
+        decoder_out, _ = self.decoder(
+            encoder_out, encoder_out_lens, ys_in_pad, ys_in_lens
+        )
+        
+        # 2. Compute attention loss
+        loss_att = self.criterion_att(decoder_out, ys_out_pad)
+        acc_att = th_accuracy(
+            decoder_out.view(-1, self.vocab_size),
+            ys_out_pad,
+            ignore_label=self.ignore_id,
+        )
+        
+        # Compute cer/wer using attention-decoder
+        if self.training or self.error_calculator is None:
+            cer_att, wer_att = None, None
+        else:
+            ys_hat = decoder_out.argmax(dim=-1)
+            cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu())
+        
+        return loss_att, acc_att, cer_att, wer_att
+    
+
+    def inference(self,
+                  data_in,
+                  data_lengths=None,
+                  key: list = None,
+                  tokenizer=None,
+                  frontend=None,
+                  **kwargs,
+                  ):
+        
+        if kwargs.get("batch_size", 1) > 1:
+            raise NotImplementedError("batch decoding is not implemented")
+        
+        # init beamsearch
+        if self.beam_search is None:
+            logging.info("enable beam_search")
+            self.init_beam_search(**kwargs)
+            self.nbest = kwargs.get("nbest", 1)
+        
+        meta_data = {}
+        if isinstance(data_in, torch.Tensor) and kwargs.get("data_type", "sound") == "fbank":  # fbank
+            speech, speech_lengths = data_in, data_lengths
+            if len(speech.shape) < 3:
+                speech = speech[None, :, :]
+            if speech_lengths is None:
+                speech_lengths = speech.shape[1]
+        else:
+            # extract fbank feats
+            time1 = time.perf_counter()
+            audio_sample_list = load_audio_text_image_video(data_in, fs=frontend.fs, audio_fs=kwargs.get("fs", 16000),
+                                                            data_type=kwargs.get("data_type", "sound"),
+                                                            tokenizer=tokenizer)
+            time2 = time.perf_counter()
+            meta_data["load_data"] = f"{time2 - time1:0.3f}"
+            speech, speech_lengths = extract_fbank(audio_sample_list, data_type=kwargs.get("data_type", "sound"),
+                                                   frontend=frontend)
+            time3 = time.perf_counter()
+            meta_data["extract_feat"] = f"{time3 - time2:0.3f}"
+            meta_data["batch_data_time"] = speech_lengths.sum().item() * frontend.frame_shift * frontend.lfr_n / 1000
+        
+        speech = speech.to(device=kwargs["device"])
+        speech_lengths = speech_lengths.to(device=kwargs["device"])
+        # Encoder
+        encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
+        if isinstance(encoder_out, tuple):
+            encoder_out = encoder_out[0]
+        
+        # c. Passed the encoder result and the beam search
+        nbest_hyps = self.beam_search(
+            x=encoder_out[0], maxlenratio=kwargs.get("maxlenratio", 0.0), minlenratio=kwargs.get("minlenratio", 0.0)
+        )
+        
+        nbest_hyps = nbest_hyps[: self.nbest]
+        
+        results = []
+        b, n, d = encoder_out.size()
+        for i in range(b):
+            
+            for nbest_idx, hyp in enumerate(nbest_hyps):
+                ibest_writer = None
+                if kwargs.get("output_dir") is not None:
+                    if not hasattr(self, "writer"):
+                        self.writer = DatadirWriter(kwargs.get("output_dir"))
+                    ibest_writer = self.writer[f"{nbest_idx + 1}best_recog"]
+                
+                # remove sos/eos and get results
+                last_pos = -1
+                if isinstance(hyp.yseq, list):
+                    token_int = hyp.yseq[1:last_pos]
+                else:
+                    token_int = hyp.yseq[1:last_pos].tolist()
+                
+                # remove blank symbol id, which is assumed to be 0
+                token_int = list(filter(lambda x: x != self.eos and x != self.sos and x != self.blank_id, token_int))
+                
+                # Change integer-ids to tokens
+                token = tokenizer.ids2tokens(token_int)
+                text = tokenizer.tokens2text(token)
+                
+                text_postprocessed, _ = postprocess_utils.sentence_postprocess(token)
+                result_i = {"key": key[i], "token": token, "text": text_postprocessed}
+                results.append(result_i)
+                
+                if ibest_writer is not None:
+                    ibest_writer["token"][key[i]] = " ".join(token)
+                    ibest_writer["text"][key[i]] = text_postprocessed
+        
+        return results, meta_data
+

+ 90 - 0
funasr/models/llm_asr/template.yaml

@@ -0,0 +1,90 @@
+# This is an example that demonstrates how to configure a model file.
+# You can modify the configuration according to your own requirements.
+
+# to print the register_table:
+# from funasr.register import tables
+# tables.print()
+
+# network architecture
+model: LLMASR
+model_conf:
+    lsm_weight: 0.1     # label smoothing option
+    length_normalized_loss: true
+
+# encoder
+encoder: Paraformer
+encoder_conf:
+    hub: funasr
+    init_param_path: "iic/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch"
+
+llm: Vicuna
+llm_conf:
+  hub: hf
+  init_param_path: null
+  freeze_llm: true
+
+adaptor: linear
+adaptor_conf:
+  downsample_rate: 1
+  llm_dim: 4096
+  encoder_dim: 2048
+
+# frontend related
+frontend: WavFrontend
+frontend_conf:
+    fs: 16000
+    window: hamming
+    n_mels: 80
+    frame_length: 25
+    frame_shift: 10
+    dither: 0.0
+    lfr_m: 1
+    lfr_n: 1
+
+specaug: SpecAug
+specaug_conf:
+    apply_time_warp: true
+    time_warp_window: 5
+    time_warp_mode: bicubic
+    apply_freq_mask: true
+    freq_mask_width_range:
+    - 0
+    - 30
+    num_freq_mask: 2
+    apply_time_mask: true
+    time_mask_width_range:
+    - 0
+    - 40
+    num_time_mask: 2
+
+train_conf:
+  accum_grad: 1
+  grad_clip: 5
+  max_epoch: 150
+  keep_nbest_models: 10
+  log_interval: 50
+
+optim: adam
+optim_conf:
+   lr: 0.001
+   weight_decay: 0.000001
+scheduler: warmuplr
+scheduler_conf:
+   warmup_steps: 35000
+
+dataset: AudioLLMDataset
+dataset_conf:
+    index_ds: IndexDSJsonl
+    batch_sampler: RankFullLocalShuffleBatchSampler
+    batch_type: example # example or length
+    batch_size: 4 # if batch_type is example, batch_size is the numbers of samples; if length, batch_size is source_token_len+target_token_len;
+    max_token_length: 2048 # filter samples if source_token_len+target_token_len > max_token_length,
+    buffer_size: 500
+    shuffle: True
+    num_workers: 4
+
+tokenizer: HuggingfaceTokenizer
+tokenizer_conf:
+  unk_symbol: <unk>
+  init_param_path: null
+

+ 15 - 0
funasr/tokenizer/hf_tokenizer.py

@@ -0,0 +1,15 @@
+
+try:
+	from transformers import AutoTokenizer
+except:
+	print("If you want to use hugging, please `pip install -U transformers`")
+
+from funasr.register import tables
+
+@tables.register("tokenizer_classes", "HuggingfaceTokenizer")
+def HuggingfaceTokenizer(init_param_path, **kwargs):
+
+	tokenizer = AutoTokenizer.from_pretrained(init_param_path)
+	
+	return tokenizer
+

+ 34 - 9
funasr/train_utils/trainer.py

@@ -5,7 +5,8 @@ import logging
 from tqdm import tqdm
 from datetime import datetime
 import torch.distributed as dist
-from contextlib import nullcontext
+from torch.cuda.amp import autocast, GradScaler
+from contextlib import nullcontext, contextmanager
 # from torch.utils.tensorboard import SummaryWriter
 from tensorboardX import SummaryWriter
 from pathlib import Path
@@ -14,6 +15,14 @@ from funasr.train_utils.device_funcs import to_device
 from funasr.train_utils.recursive_op import recursive_average
 from funasr.train_utils.average_nbest_models import average_checkpoints
 
+@contextmanager
+def maybe_autocast(enabled):
+    if enabled:
+        with autocast():
+            yield
+    else:
+        yield
+
 class Trainer:
     """
     A simple trainer class for training a PyTorch model, saving checkpoints at the end of each epoch,
@@ -36,8 +45,9 @@ class Trainer:
                  dataloader_train,
                  dataloader_val,
                  local_rank,
-                 use_ddp=False,
-                 use_fsdp=False,
+                 use_ddp: bool = False,
+                 use_fsdp: bool = False,
+                 use_fp16: bool = False,
                  output_dir: str="./",
                  **kwargs):
         """
@@ -72,6 +82,9 @@ class Trainer:
         self.kwargs = kwargs
         self.log_interval = kwargs.get("log_interval", 50)
         self.batch_total = 0
+        self.use_fp16 = use_fp16
+        self.disable_gpu_cache = kwargs.get("disable_gpu_cache", True)
+        self.scaler = GradScaler(enabled=use_fp16) if use_fp16 else None
         
     
         try:
@@ -103,6 +116,8 @@ class Trainer:
             'optimizer': self.optim.state_dict(),
             'scheduler': self.scheduler.state_dict(),
         }
+        if self.scaler:
+            state["scaler_state"] = self.scaler.state_dict()
         # Create output directory if it does not exist
         os.makedirs(self.output_dir, exist_ok=True)
         filename = os.path.join(self.output_dir, f'model.pt.ep{epoch}')
@@ -141,6 +156,8 @@ class Trainer:
             self.model.load_state_dict(dst_state)
             self.optim.load_state_dict(checkpoint['optimizer'])
             self.scheduler.load_state_dict(checkpoint['scheduler'])
+            if self.scaler and 'scaler_state' in checkpoint:
+                self.scaler.load_state_dict(checkpoint['scaler_state'])
             print(f"Checkpoint loaded successfully from '{ckpt}'")
         else:
             print(f"No checkpoint found at '{ckpt}', starting from scratch")
@@ -221,9 +238,10 @@ class Trainer:
             my_context = self.model.no_sync if batch_idx % accum_grad != 0 else nullcontext
             with my_context():
                 time2 = time.perf_counter()
-
-                retval = self.model(**batch)
-                torch.cuda.empty_cache()
+                with maybe_autocast(self.use_fp16):
+                    retval = self.model(**batch)
+                    
+                if self.disable_gpu_cache: torch.cuda.empty_cache()
 
                 time3 = time.perf_counter()
                 speed_stats["forward_time"] = f"{time3 - time2:0.3f}"
@@ -241,7 +259,10 @@ class Trainer:
                     loss *= self.world_size
                 # Scale the loss since we're not updating for every mini-batch
                 loss = loss / accum_grad
-                loss.backward()
+                if self.use_fp16:
+                    self.scaler.scale(loss).backward()
+                else:
+                    loss.backward()
                 time4 = time.perf_counter()
                 speed_stats["backward_time"] = f"{time4 - time3:0.3f}"
             
@@ -264,10 +285,14 @@ class Trainer:
                 # Execute an optimization step (update model parameters)
                 if self.use_ddp or self.use_fsdp:
                     dist.barrier()
-                self.optim.step()
+                if self.use_fp16:
+                    self.scaler.step(self.optim)
+                    self.scaler.update()
+                else:
+                    self.optim.step()
                 self.scheduler.step()
                 # Clear gradients for the next accumulation stage
-                self.optim.zero_grad()
+                self.optim.zero_grad(set_to_none=True)
                 total_time = f"{time.perf_counter() - time5:0.3f}"
                 time5 = time.perf_counter()
                 speed_stats["optim_time"] = f"{time5 - time4:0.3f}"