|
|
@@ -69,6 +69,7 @@ class Trainer:
|
|
|
self.device = next(model.parameters()).device
|
|
|
self.avg_nbest_model = kwargs.get("avg_nbest_model", 5)
|
|
|
self.kwargs = kwargs
|
|
|
+ self.log_interval = kwargs.get("log_interval", 50)
|
|
|
|
|
|
|
|
|
try:
|
|
|
@@ -274,8 +275,8 @@ class Trainer:
|
|
|
|
|
|
|
|
|
|
|
|
- if self.local_rank == 0:
|
|
|
- pbar.update(1)
|
|
|
+ if batch_idx % self.log_interval == 0 or batch_idx == len(self.dataloader_train) - 1:
|
|
|
+ pbar.update(self.log_interval)
|
|
|
gpu_info = "GPU, memory: {:.3f} GB, " \
|
|
|
"{:.3f} GB, "\
|
|
|
"{:.3f} GB, "\
|
|
|
@@ -285,23 +286,23 @@ class Trainer:
|
|
|
torch.cuda.max_memory_reserved()/1024/1024/1024,
|
|
|
)
|
|
|
description = (
|
|
|
+ f"rank: {self.local_rank}, "
|
|
|
f"Train epoch: {epoch}/{self.max_epoch}, "
|
|
|
f"step {batch_idx}/{len(self.dataloader_train)}, "
|
|
|
f"{speed_stats}, "
|
|
|
f"(loss: {loss.detach().cpu().item():.3f}), "
|
|
|
f"{[(k, round(v.cpu().item(), 3)) for k, v in stats.items()]}"
|
|
|
f"{gpu_info}"
|
|
|
- f"rank: {self.local_rank}"
|
|
|
)
|
|
|
pbar.set_description(description)
|
|
|
if self.writer:
|
|
|
- self.writer.add_scalar('Loss/train', loss.item(),
|
|
|
+ self.writer.add_scalar(f'rank{self.local_rank}, Loss/train', loss.item(),
|
|
|
epoch*len(self.dataloader_train) + batch_idx)
|
|
|
for key, var in stats.items():
|
|
|
- self.writer.add_scalar(f'{key}/train', var.item(),
|
|
|
+ self.writer.add_scalar(f'rank{self.local_rank}, {key}/train', var.item(),
|
|
|
epoch * len(self.dataloader_train) + batch_idx)
|
|
|
for key, var in speed_stats.items():
|
|
|
- self.writer.add_scalar(f'{key}/train', eval(var),
|
|
|
+ self.writer.add_scalar(f'rank{self.local_rank}, {key}/train', eval(var),
|
|
|
epoch * len(self.dataloader_train) + batch_idx)
|
|
|
|
|
|
# if batch_idx == 2:
|
|
|
@@ -347,9 +348,10 @@ class Trainer:
|
|
|
time4 = time.perf_counter()
|
|
|
|
|
|
|
|
|
- if self.local_rank == 0:
|
|
|
- pbar.update(1)
|
|
|
+ if batch_idx % self.log_interval == 0 or batch_idx == len(self.dataloader_train) - 1:
|
|
|
+ pbar.update(self.log_interval)
|
|
|
description = (
|
|
|
+ f"rank: {self.local_rank}, "
|
|
|
f"validation epoch: {epoch}/{self.max_epoch}, "
|
|
|
f"step {batch_idx}/{len(self.dataloader_train)}, "
|
|
|
f"{speed_stats}, "
|
|
|
@@ -359,11 +361,11 @@ class Trainer:
|
|
|
)
|
|
|
pbar.set_description(description)
|
|
|
if self.writer:
|
|
|
- self.writer.add_scalar('Loss/val', loss.item(),
|
|
|
+ self.writer.add_scalar(f"rank{self.local_rank}, Loss/val", loss.item(),
|
|
|
epoch*len(self.dataloader_train) + batch_idx)
|
|
|
for key, var in stats.items():
|
|
|
- self.writer.add_scalar(f'{key}/val', var.item(),
|
|
|
+ self.writer.add_scalar(f'rank{self.local_rank}, {key}/val', var.item(),
|
|
|
epoch * len(self.dataloader_train) + batch_idx)
|
|
|
for key, var in speed_stats.items():
|
|
|
- self.writer.add_scalar(f'{key}/val', eval(var),
|
|
|
+ self.writer.add_scalar(f'rank{self.local_rank}, {key}/val', eval(var),
|
|
|
epoch * len(self.dataloader_train) + batch_idx)
|