|
|
@@ -45,7 +45,7 @@ from funasr.utils.types import str2bool
|
|
|
from funasr.utils.types import str2triple_str
|
|
|
from funasr.utils.types import str_or_none
|
|
|
from funasr.utils.vad_utils import slice_padding_fbank
|
|
|
-
|
|
|
+from tqdm import tqdm
|
|
|
|
|
|
def inference_asr(
|
|
|
maxlenratio: float,
|
|
|
@@ -651,7 +651,8 @@ def inference_paraformer_vad_punc(
|
|
|
|
|
|
batch_size_token_ms_cum = 0
|
|
|
beg_idx = 0
|
|
|
- for j, _ in enumerate(range(0, n)):
|
|
|
+ beg_asr_total = time.time()
|
|
|
+ for j, _ in tqdm(enumerate(range(0, n))):
|
|
|
batch_size_token_ms_cum += (sorted_data[j][0][1] - sorted_data[j][0][0])
|
|
|
if j < n - 1 and (batch_size_token_ms_cum + sorted_data[j + 1][0][1] - sorted_data[j + 1][0][0]) < batch_size_token_ms and (sorted_data[j + 1][0][1] - sorted_data[j + 1][0][0]) < batch_size_token_threshold_s:
|
|
|
continue
|
|
|
@@ -661,16 +662,17 @@ def inference_paraformer_vad_punc(
|
|
|
beg_idx = end_idx
|
|
|
batch = {"speech": speech_j, "speech_lengths": speech_lengths_j}
|
|
|
batch = to_device(batch, device=device)
|
|
|
- print("batch: ", speech_j.shape[0])
|
|
|
+ # print("batch: ", speech_j.shape[0])
|
|
|
beg_asr = time.time()
|
|
|
results = speech2text(**batch)
|
|
|
end_asr = time.time()
|
|
|
- print("time cost asr: ", end_asr - beg_asr)
|
|
|
+ # print("time cost asr: ", end_asr - beg_asr)
|
|
|
|
|
|
if len(results) < 1:
|
|
|
results = [["", [], [], [], [], [], []]]
|
|
|
results_sorted.extend(results)
|
|
|
-
|
|
|
+ end_asr_total = time.time()
|
|
|
+ print("total time cost asr: ", end_asr_total-beg_asr_total)
|
|
|
restored_data = [0] * n
|
|
|
for j in range(n):
|
|
|
index = sorted_data[j][1]
|