haoneng.lhn пре 2 година
родитељ
комит
8ae9fa8365
2 измењених фајлова са 0 додато и 105 уклоњено
  1. 0 59
      funasr/models/decoder/sanm_decoder.py
  2. 0 46
      funasr/models/encoder/sanm_encoder.py

+ 0 - 59
funasr/models/decoder/sanm_decoder.py

@@ -1035,65 +1035,6 @@ class ParaformerSANMDecoder(BaseTransformerDecoder):
         )
         return logp.squeeze(0), state
 
-    #def forward_chunk(
-    #    self,
-    #    memory: torch.Tensor,
-    #    tgt: torch.Tensor,
-    #    cache: dict = None,
-    #) -> Tuple[torch.Tensor, torch.Tensor]:
-    #    """Forward decoder.
-
-    #    Args:
-    #        hs_pad: encoded memory, float32  (batch, maxlen_in, feat)
-    #        hlens: (batch)
-    #        ys_in_pad:
-    #            input token ids, int64 (batch, maxlen_out)
-    #            if input_layer == "embed"
-    #            input tensor (batch, maxlen_out, #mels) in the other cases
-    #        ys_in_lens: (batch)
-    #    Returns:
-    #        (tuple): tuple containing:
-
-    #        x: decoded token score before softmax (batch, maxlen_out, token)
-    #            if use_output_layer is True,
-    #        olens: (batch, )
-    #    """
-    #    x = tgt
-    #    if cache["decode_fsmn"] is None:
-    #        cache_layer_num = len(self.decoders)
-    #        if self.decoders2 is not None:
-    #            cache_layer_num += len(self.decoders2)
-    #        new_cache = [None] * cache_layer_num
-    #    else:
-    #        new_cache = cache["decode_fsmn"]
-    #    for i in range(self.att_layer_num):
-    #        decoder = self.decoders[i]
-    #        x, tgt_mask, memory, memory_mask, c_ret = decoder.forward_chunk(
-    #            x, None, memory, None, cache=new_cache[i]
-    #        )
-    #        new_cache[i] = c_ret
-
-    #    if self.num_blocks - self.att_layer_num > 1:
-    #        for i in range(self.num_blocks - self.att_layer_num):
-    #            j = i + self.att_layer_num
-    #            decoder = self.decoders2[i]
-    #            x, tgt_mask, memory, memory_mask, c_ret = decoder.forward_chunk(
-    #                x, None, memory, None, cache=new_cache[j]
-    #            )
-    #            new_cache[j] = c_ret
-
-    #    for decoder in self.decoders3:
-
-    #        x, tgt_mask, memory, memory_mask, _ = decoder.forward_chunk(
-    #            x, None, memory, None, cache=None
-    #        )
-    #    if self.normalize_before:
-    #        x = self.after_norm(x)
-    #    if self.output_layer is not None:
-    #        x = self.output_layer(x)
-    #    cache["decode_fsmn"] = new_cache
-    #    return x
-
     def forward_chunk(
         self,
         memory: torch.Tensor,

+ 0 - 46
funasr/models/encoder/sanm_encoder.py

@@ -873,52 +873,6 @@ class SANMEncoderChunkOpt(AbsEncoder):
         cache["feats"] = overlap_feats[:, -(cache["chunk_size"][0] + cache["chunk_size"][2]):, :]
         return overlap_feats
 
-    #def forward_chunk(self,
-    #                  xs_pad: torch.Tensor,
-    #                  ilens: torch.Tensor,
-    #                  cache: dict = None,
-    #                  ctc: CTC = None,
-    #                  ):
-    #    xs_pad *= self.output_size() ** 0.5
-    #    if self.embed is None:
-    #        xs_pad = xs_pad
-    #    else:
-    #        xs_pad = self.embed(xs_pad, cache)
-    #    if cache["tail_chunk"]:
-    #        xs_pad = to_device(cache["feats"], device=xs_pad.device)
-    #    else:
-    #        xs_pad = self._add_overlap_chunk(xs_pad, cache)
-    #    encoder_outs = self.encoders0(xs_pad, None, None, None, None)
-    #    xs_pad, masks = encoder_outs[0], encoder_outs[1]
-    #    intermediate_outs = []
-    #    if len(self.interctc_layer_idx) == 0:
-    #        encoder_outs = self.encoders(xs_pad, None, None, None, None)
-    #        xs_pad, masks = encoder_outs[0], encoder_outs[1]
-    #    else:
-    #        for layer_idx, encoder_layer in enumerate(self.encoders):
-    #            encoder_outs = encoder_layer(xs_pad, None, None, None, None)
-    #            xs_pad, masks = encoder_outs[0], encoder_outs[1]
-    #            if layer_idx + 1 in self.interctc_layer_idx:
-    #                encoder_out = xs_pad
-
-    #                # intermediate outputs are also normalized
-    #                if self.normalize_before:
-    #                    encoder_out = self.after_norm(encoder_out)
-
-    #                intermediate_outs.append((layer_idx + 1, encoder_out))
-
-    #                if self.interctc_use_conditioning:
-    #                    ctc_out = ctc.softmax(encoder_out)
-    #                    xs_pad = xs_pad + self.conditioning_layer(ctc_out)
-
-    #    if self.normalize_before:
-    #        xs_pad = self.after_norm(xs_pad)
-
-    #    if len(intermediate_outs) > 0:
-    #        return (xs_pad, intermediate_outs), None, None
-    #    return xs_pad, ilens, None
-
-
     def forward_chunk(self,
                       xs_pad: torch.Tensor,
                       ilens: torch.Tensor,