浏览代码

transducer inference

shixian.shi 1 年之前
父节点
当前提交
9bed46a31e
共有 4 个文件被更改,包括 338 次插入1457 次删除
  1. 0 238
      funasr/models/bat/attention.py
  2. 0 220
      funasr/models/bat/cif_predictor.py
  3. 0 701
      funasr/models/bat/conformer_chunk_encoder.py
  4. 338 298
      funasr/models/bat/model.py

+ 0 - 238
funasr/models/bat/attention.py

@@ -1,238 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-
-# Copyright 2019 Shigeki Karita
-#  Apache 2.0  (http://www.apache.org/licenses/LICENSE-2.0)
-
-"""Multi-Head Attention layer definition."""
-
-import math
-
-import numpy
-import torch
-from torch import nn
-from typing import Optional, Tuple
-
-import torch.nn.functional as F
-from funasr.models.transformer.utils.nets_utils import make_pad_mask
-import funasr.models.lora.layers as lora
-
-
-class RelPositionMultiHeadedAttentionChunk(torch.nn.Module):
-    """RelPositionMultiHeadedAttention definition.
-    Args:
-        num_heads: Number of attention heads.
-        embed_size: Embedding size.
-        dropout_rate: Dropout rate.
-    """
-
-    def __init__(
-        self,
-        num_heads: int,
-        embed_size: int,
-        dropout_rate: float = 0.0,
-        simplified_attention_score: bool = False,
-    ) -> None:
-        """Construct an MultiHeadedAttention object."""
-        super().__init__()
-
-        self.d_k = embed_size // num_heads
-        self.num_heads = num_heads
-
-        assert self.d_k * num_heads == embed_size, (
-            "embed_size (%d) must be divisible by num_heads (%d)",
-            (embed_size, num_heads),
-        )
-
-        self.linear_q = torch.nn.Linear(embed_size, embed_size)
-        self.linear_k = torch.nn.Linear(embed_size, embed_size)
-        self.linear_v = torch.nn.Linear(embed_size, embed_size)
-
-        self.linear_out = torch.nn.Linear(embed_size, embed_size)
-
-        if simplified_attention_score:
-            self.linear_pos = torch.nn.Linear(embed_size, num_heads)
-
-            self.compute_att_score = self.compute_simplified_attention_score
-        else:
-            self.linear_pos = torch.nn.Linear(embed_size, embed_size, bias=False)
-
-            self.pos_bias_u = torch.nn.Parameter(torch.Tensor(num_heads, self.d_k))
-            self.pos_bias_v = torch.nn.Parameter(torch.Tensor(num_heads, self.d_k))
-            torch.nn.init.xavier_uniform_(self.pos_bias_u)
-            torch.nn.init.xavier_uniform_(self.pos_bias_v)
-
-            self.compute_att_score = self.compute_attention_score
-
-        self.dropout = torch.nn.Dropout(p=dropout_rate)
-        self.attn = None
-
-    def rel_shift(self, x: torch.Tensor, left_context: int = 0) -> torch.Tensor:
-        """Compute relative positional encoding.
-        Args:
-            x: Input sequence. (B, H, T_1, 2 * T_1 - 1)
-            left_context: Number of frames in left context.
-        Returns:
-            x: Output sequence. (B, H, T_1, T_2)
-        """
-        batch_size, n_heads, time1, n = x.shape
-        time2 = time1 + left_context
-
-        batch_stride, n_heads_stride, time1_stride, n_stride = x.stride()
-
-        return x.as_strided(
-            (batch_size, n_heads, time1, time2),
-            (batch_stride, n_heads_stride, time1_stride - n_stride, n_stride),
-            storage_offset=(n_stride * (time1 - 1)),
-        )
-
-    def compute_simplified_attention_score(
-        self,
-        query: torch.Tensor,
-        key: torch.Tensor,
-        pos_enc: torch.Tensor,
-        left_context: int = 0,
-    ) -> torch.Tensor:
-        """Simplified attention score computation.
-        Reference: https://github.com/k2-fsa/icefall/pull/458
-        Args:
-            query: Transformed query tensor. (B, H, T_1, d_k)
-            key: Transformed key tensor. (B, H, T_2, d_k)
-            pos_enc: Positional embedding tensor. (B, 2 * T_1 - 1, size)
-            left_context: Number of frames in left context.
-        Returns:
-            : Attention score. (B, H, T_1, T_2)
-        """
-        pos_enc = self.linear_pos(pos_enc)
-
-        matrix_ac = torch.matmul(query, key.transpose(2, 3))
-
-        matrix_bd = self.rel_shift(
-            pos_enc.transpose(1, 2).unsqueeze(2).repeat(1, 1, query.size(2), 1),
-            left_context=left_context,
-        )
-
-        return (matrix_ac + matrix_bd) / math.sqrt(self.d_k)
-
-    def compute_attention_score(
-        self,
-        query: torch.Tensor,
-        key: torch.Tensor,
-        pos_enc: torch.Tensor,
-        left_context: int = 0,
-    ) -> torch.Tensor:
-        """Attention score computation.
-        Args:
-            query: Transformed query tensor. (B, H, T_1, d_k)
-            key: Transformed key tensor. (B, H, T_2, d_k)
-            pos_enc: Positional embedding tensor. (B, 2 * T_1 - 1, size)
-            left_context: Number of frames in left context.
-        Returns:
-            : Attention score. (B, H, T_1, T_2)
-        """
-        p = self.linear_pos(pos_enc).view(pos_enc.size(0), -1, self.num_heads, self.d_k)
-
-        query = query.transpose(1, 2)
-        q_with_bias_u = (query + self.pos_bias_u).transpose(1, 2)
-        q_with_bias_v = (query + self.pos_bias_v).transpose(1, 2)
-
-        matrix_ac = torch.matmul(q_with_bias_u, key.transpose(-2, -1))
-
-        matrix_bd = torch.matmul(q_with_bias_v, p.permute(0, 2, 3, 1))
-        matrix_bd = self.rel_shift(matrix_bd, left_context=left_context)
-
-        return (matrix_ac + matrix_bd) / math.sqrt(self.d_k)
-
-    def forward_qkv(
-        self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor
-    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
-        """Transform query, key and value.
-        Args:
-            query: Query tensor. (B, T_1, size)
-            key: Key tensor. (B, T_2, size)
-            v: Value tensor. (B, T_2, size)
-        Returns:
-            q: Transformed query tensor. (B, H, T_1, d_k)
-            k: Transformed key tensor. (B, H, T_2, d_k)
-            v: Transformed value tensor. (B, H, T_2, d_k)
-        """
-        n_batch = query.size(0)
-
-        q = (
-            self.linear_q(query)
-            .view(n_batch, -1, self.num_heads, self.d_k)
-            .transpose(1, 2)
-        )
-        k = (
-            self.linear_k(key)
-            .view(n_batch, -1, self.num_heads, self.d_k)
-            .transpose(1, 2)
-        )
-        v = (
-            self.linear_v(value)
-            .view(n_batch, -1, self.num_heads, self.d_k)
-            .transpose(1, 2)
-        )
-
-        return q, k, v
-
-    def forward_attention(
-        self,
-        value: torch.Tensor,
-        scores: torch.Tensor,
-        mask: torch.Tensor,
-        chunk_mask: Optional[torch.Tensor] = None,
-    ) -> torch.Tensor:
-        """Compute attention context vector.
-        Args:
-            value: Transformed value. (B, H, T_2, d_k)
-            scores: Attention score. (B, H, T_1, T_2)
-            mask: Source mask. (B, T_2)
-            chunk_mask: Chunk mask. (T_1, T_1)
-        Returns:
-           attn_output: Transformed value weighted by attention score. (B, T_1, H * d_k)
-        """
-        batch_size = scores.size(0)
-        mask = mask.unsqueeze(1).unsqueeze(2)
-        if chunk_mask is not None:
-            mask = chunk_mask.unsqueeze(0).unsqueeze(1) | mask
-        scores = scores.masked_fill(mask, float("-inf"))
-        self.attn = torch.softmax(scores, dim=-1).masked_fill(mask, 0.0)
-
-        attn_output = self.dropout(self.attn)
-        attn_output = torch.matmul(attn_output, value)
-
-        attn_output = self.linear_out(
-            attn_output.transpose(1, 2)
-            .contiguous()
-            .view(batch_size, -1, self.num_heads * self.d_k)
-        )
-
-        return attn_output
-
-    def forward(
-        self,
-        query: torch.Tensor,
-        key: torch.Tensor,
-        value: torch.Tensor,
-        pos_enc: torch.Tensor,
-        mask: torch.Tensor,
-        chunk_mask: Optional[torch.Tensor] = None,
-        left_context: int = 0,
-    ) -> torch.Tensor:
-        """Compute scaled dot product attention with rel. positional encoding.
-        Args:
-            query: Query tensor. (B, T_1, size)
-            key: Key tensor. (B, T_2, size)
-            value: Value tensor. (B, T_2, size)
-            pos_enc: Positional embedding tensor. (B, 2 * T_1 - 1, size)
-            mask: Source mask. (B, T_2)
-            chunk_mask: Chunk mask. (T_1, T_1)
-            left_context: Number of frames in left context.
-        Returns:
-            : Output tensor. (B, T_1, H * d_k)
-        """
-        q, k, v = self.forward_qkv(query, key, value)
-        scores = self.compute_att_score(q, k, pos_enc, left_context=left_context)
-        return self.forward_attention(v, scores, mask, chunk_mask=chunk_mask)
-

+ 0 - 220
funasr/models/bat/cif_predictor.py

@@ -1,220 +0,0 @@
-# import torch
-# from torch import nn
-# from torch import Tensor
-# import logging
-# import numpy as np
-# from funasr.train_utils.device_funcs import to_device
-# from funasr.models.transformer.utils.nets_utils import make_pad_mask
-# from funasr.models.scama.utils import sequence_mask
-# from typing import Optional, Tuple
-#
-# from funasr.register import tables
-#
-# class mae_loss(nn.Module):
-#
-#     def __init__(self, normalize_length=False):
-#         super(mae_loss, self).__init__()
-#         self.normalize_length = normalize_length
-#         self.criterion = torch.nn.L1Loss(reduction='sum')
-#
-#     def forward(self, token_length, pre_token_length):
-#         loss_token_normalizer = token_length.size(0)
-#         if self.normalize_length:
-#             loss_token_normalizer = token_length.sum().type(torch.float32)
-#         loss = self.criterion(token_length, pre_token_length)
-#         loss = loss / loss_token_normalizer
-#         return loss
-#
-#
-# def cif(hidden, alphas, threshold):
-#     batch_size, len_time, hidden_size = hidden.size()
-#
-#     # loop varss
-#     integrate = torch.zeros([batch_size], device=hidden.device)
-#     frame = torch.zeros([batch_size, hidden_size], device=hidden.device)
-#     # intermediate vars along time
-#     list_fires = []
-#     list_frames = []
-#
-#     for t in range(len_time):
-#         alpha = alphas[:, t]
-#         distribution_completion = torch.ones([batch_size], device=hidden.device) - integrate
-#
-#         integrate += alpha
-#         list_fires.append(integrate)
-#
-#         fire_place = integrate >= threshold
-#         integrate = torch.where(fire_place,
-#                                 integrate - torch.ones([batch_size], device=hidden.device),
-#                                 integrate)
-#         cur = torch.where(fire_place,
-#                           distribution_completion,
-#                           alpha)
-#         remainds = alpha - cur
-#
-#         frame += cur[:, None] * hidden[:, t, :]
-#         list_frames.append(frame)
-#         frame = torch.where(fire_place[:, None].repeat(1, hidden_size),
-#                             remainds[:, None] * hidden[:, t, :],
-#                             frame)
-#
-#     fires = torch.stack(list_fires, 1)
-#     frames = torch.stack(list_frames, 1)
-#     list_ls = []
-#     len_labels = torch.round(alphas.sum(-1)).int()
-#     max_label_len = len_labels.max()
-#     for b in range(batch_size):
-#         fire = fires[b, :]
-#         l = torch.index_select(frames[b, :, :], 0, torch.nonzero(fire >= threshold).squeeze())
-#         pad_l = torch.zeros([max_label_len - l.size(0), hidden_size], device=hidden.device)
-#         list_ls.append(torch.cat([l, pad_l], 0))
-#     return torch.stack(list_ls, 0), fires
-#
-#
-# def cif_wo_hidden(alphas, threshold):
-#     batch_size, len_time = alphas.size()
-#
-#     # loop varss
-#     integrate = torch.zeros([batch_size], device=alphas.device)
-#     # intermediate vars along time
-#     list_fires = []
-#
-#     for t in range(len_time):
-#         alpha = alphas[:, t]
-#
-#         integrate += alpha
-#         list_fires.append(integrate)
-#
-#         fire_place = integrate >= threshold
-#         integrate = torch.where(fire_place,
-#                                 integrate - torch.ones([batch_size], device=alphas.device)*threshold,
-#                                 integrate)
-#
-#     fires = torch.stack(list_fires, 1)
-#     return fires
-#
-# @tables.register("predictor_classes", "BATPredictor")
-# class BATPredictor(nn.Module):
-#     def __init__(self, idim, l_order, r_order, threshold=1.0, dropout=0.1, smooth_factor=1.0, noise_threshold=0, return_accum=False):
-#         super(BATPredictor, self).__init__()
-#
-#         self.pad = nn.ConstantPad1d((l_order, r_order), 0)
-#         self.cif_conv1d = nn.Conv1d(idim, idim, l_order + r_order + 1, groups=idim)
-#         self.cif_output = nn.Linear(idim, 1)
-#         self.dropout = torch.nn.Dropout(p=dropout)
-#         self.threshold = threshold
-#         self.smooth_factor = smooth_factor
-#         self.noise_threshold = noise_threshold
-#         self.return_accum = return_accum
-#
-#     def cif(
-#         self,
-#         input: Tensor,
-#         alpha: Tensor,
-#         beta: float = 1.0,
-#         return_accum: bool = False,
-#     ) -> Tuple[Tensor, Tensor, Tensor, Tensor]:
-#         B, S, C = input.size()
-#         assert tuple(alpha.size()) == (B, S), f"{alpha.size()} != {(B, S)}"
-#
-#         dtype = alpha.dtype
-#         alpha = alpha.float()
-#
-#         alpha_sum = alpha.sum(1)
-#         feat_lengths = (alpha_sum / beta).floor().long()
-#         T = feat_lengths.max()
-#
-#         # aggregate and integrate
-#         csum = alpha.cumsum(-1)
-#         with torch.no_grad():
-#             # indices used for scattering
-#             right_idx = (csum / beta).floor().long().clip(max=T)
-#             left_idx = right_idx.roll(1, dims=1)
-#             left_idx[:, 0] = 0
-#
-#             # count # of fires from each source
-#             fire_num = right_idx - left_idx
-#             extra_weights = (fire_num - 1).clip(min=0)
-#             # The extra entry in last dim is for
-#             output = input.new_zeros((B, T + 1, C))
-#             source_range = torch.arange(1, 1 + S).unsqueeze(0).type_as(input)
-#             zero = alpha.new_zeros((1,))
-#
-#         # right scatter
-#         fire_mask = fire_num > 0
-#         right_weight = torch.where(
-#             fire_mask,
-#             csum - right_idx.type_as(alpha) * beta,
-#             zero
-#         ).type_as(input)
-#         # assert right_weight.ge(0).all(), f"{right_weight} should be non-negative."
-#         output.scatter_add_(
-#             1,
-#             right_idx.unsqueeze(-1).expand(-1, -1, C),
-#             right_weight.unsqueeze(-1) * input
-#         )
-#
-#         # left scatter
-#         left_weight = (
-#             alpha - right_weight - extra_weights.type_as(alpha) * beta
-#         ).type_as(input)
-#         output.scatter_add_(
-#             1,
-#             left_idx.unsqueeze(-1).expand(-1, -1, C),
-#             left_weight.unsqueeze(-1) * input
-#         )
-#
-#          # extra scatters
-#         if extra_weights.ge(0).any():
-#             extra_steps = extra_weights.max().item()
-#             tgt_idx = left_idx
-#             src_feats = input * beta
-#             for _ in range(extra_steps):
-#                 tgt_idx = (tgt_idx + 1).clip(max=T)
-#                 # (B, S, 1)
-#                 src_mask = (extra_weights > 0)
-#                 output.scatter_add_(
-#                     1,
-#                     tgt_idx.unsqueeze(-1).expand(-1, -1, C),
-#                     src_feats * src_mask.unsqueeze(2)
-#                 )
-#                 extra_weights -= 1
-#
-#         output = output[:, :T, :]
-#
-#         if return_accum:
-#             return output, csum
-#         else:
-#             return output, alpha
-#
-#     def forward(self, hidden, target_label=None, mask=None, ignore_id=-1, mask_chunk_predictor=None, target_label_length=None):
-#         h = hidden
-#         context = h.transpose(1, 2)
-#         queries = self.pad(context)
-#         memory = self.cif_conv1d(queries)
-#         output = memory + context
-#         output = self.dropout(output)
-#         output = output.transpose(1, 2)
-#         output = torch.relu(output)
-#         output = self.cif_output(output)
-#         alphas = torch.sigmoid(output)
-#         alphas = torch.nn.functional.relu(alphas*self.smooth_factor - self.noise_threshold)
-#         if mask is not None:
-#             alphas = alphas * mask.transpose(-1, -2).float()
-#         if mask_chunk_predictor is not None:
-#             alphas = alphas * mask_chunk_predictor
-#         alphas = alphas.squeeze(-1)
-#         if target_label_length is not None:
-#             target_length = target_label_length
-#         elif target_label is not None:
-#             target_length = (target_label != ignore_id).float().sum(-1)
-#             # logging.info("target_length: {}".format(target_length))
-#         else:
-#             target_length = None
-#         token_num = alphas.sum(-1)
-#         if target_length is not None:
-#             # length_noise = torch.rand(alphas.size(0), device=alphas.device) - 0.5
-#             # target_length = length_noise + target_length
-#             alphas *= ((target_length + 1e-4) / token_num)[:, None].repeat(1, alphas.size(1))
-#         acoustic_embeds, cif_peak = self.cif(hidden, alphas, self.threshold, self.return_accum)
-#         return acoustic_embeds, token_num, alphas, cif_peak

+ 0 - 701
funasr/models/bat/conformer_chunk_encoder.py

@@ -1,701 +0,0 @@
-
-"""Conformer encoder definition."""
-
-import logging
-from typing import Union, Dict, List, Tuple, Optional
-
-import torch
-from torch import nn
-
-
-from funasr.models.bat.attention import (
-    RelPositionMultiHeadedAttentionChunk,
-)
-from funasr.models.transformer.embedding import (
-    StreamingRelPositionalEncoding,
-)
-from funasr.models.transformer.layer_norm import LayerNorm
-from funasr.models.transformer.utils.nets_utils import get_activation
-from funasr.models.transformer.utils.nets_utils import (
-    TooShortUttError,
-    check_short_utt,
-    make_chunk_mask,
-    make_source_mask,
-)
-from funasr.models.transformer.positionwise_feed_forward import (
-    PositionwiseFeedForward,
-)
-from funasr.models.transformer.utils.repeat import repeat, MultiBlocks
-from funasr.models.transformer.utils.subsampling import TooShortUttError
-from funasr.models.transformer.utils.subsampling import check_short_utt
-from funasr.models.transformer.utils.subsampling import StreamingConvInput
-from funasr.register import tables
-
-
-
-class ChunkEncoderLayer(nn.Module):
-    """Chunk Conformer module definition.
-    Args:
-        block_size: Input/output size.
-        self_att: Self-attention module instance.
-        feed_forward: Feed-forward module instance.
-        feed_forward_macaron: Feed-forward module instance for macaron network.
-        conv_mod: Convolution module instance.
-        norm_class: Normalization module class.
-        norm_args: Normalization module arguments.
-        dropout_rate: Dropout rate.
-    """
-
-    def __init__(
-        self,
-        block_size: int,
-        self_att: torch.nn.Module,
-        feed_forward: torch.nn.Module,
-        feed_forward_macaron: torch.nn.Module,
-        conv_mod: torch.nn.Module,
-        norm_class: torch.nn.Module = LayerNorm,
-        norm_args: Dict = {},
-        dropout_rate: float = 0.0,
-    ) -> None:
-        """Construct a Conformer object."""
-        super().__init__()
-
-        self.self_att = self_att
-
-        self.feed_forward = feed_forward
-        self.feed_forward_macaron = feed_forward_macaron
-        self.feed_forward_scale = 0.5
-
-        self.conv_mod = conv_mod
-
-        self.norm_feed_forward = norm_class(block_size, **norm_args)
-        self.norm_self_att = norm_class(block_size, **norm_args)
-
-        self.norm_macaron = norm_class(block_size, **norm_args)
-        self.norm_conv = norm_class(block_size, **norm_args)
-        self.norm_final = norm_class(block_size, **norm_args)
-
-        self.dropout = torch.nn.Dropout(dropout_rate)
-
-        self.block_size = block_size
-        self.cache = None
-
-    def reset_streaming_cache(self, left_context: int, device: torch.device) -> None:
-        """Initialize/Reset self-attention and convolution modules cache for streaming.
-        Args:
-            left_context: Number of left frames during chunk-by-chunk inference.
-            device: Device to use for cache tensor.
-        """
-        self.cache = [
-            torch.zeros(
-                (1, left_context, self.block_size),
-                device=device,
-            ),
-            torch.zeros(
-                (
-                    1,
-                    self.block_size,
-                    self.conv_mod.kernel_size - 1,
-                ),
-                device=device,
-            ),
-        ]
-
-    def forward(
-        self,
-        x: torch.Tensor,
-        pos_enc: torch.Tensor,
-        mask: torch.Tensor,
-        chunk_mask: Optional[torch.Tensor] = None,
-    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
-        """Encode input sequences.
-        Args:
-            x: Conformer input sequences. (B, T, D_block)
-            pos_enc: Positional embedding sequences. (B, 2 * (T - 1), D_block)
-            mask: Source mask. (B, T)
-            chunk_mask: Chunk mask. (T_2, T_2)
-        Returns:
-            x: Conformer output sequences. (B, T, D_block)
-            mask: Source mask. (B, T)
-            pos_enc: Positional embedding sequences. (B, 2 * (T - 1), D_block)
-        """
-        residual = x
-
-        x = self.norm_macaron(x)
-        x = residual + self.feed_forward_scale * self.dropout(
-            self.feed_forward_macaron(x)
-        )
-
-        residual = x
-        x = self.norm_self_att(x)
-        x_q = x
-        x = residual + self.dropout(
-            self.self_att(
-                x_q,
-                x,
-                x,
-                pos_enc,
-                mask,
-                chunk_mask=chunk_mask,
-            )
-        )
-
-        residual = x
-
-        x = self.norm_conv(x)
-        x, _ = self.conv_mod(x)
-        x = residual + self.dropout(x)
-        residual = x
-
-        x = self.norm_feed_forward(x)
-        x = residual + self.feed_forward_scale * self.dropout(self.feed_forward(x))
-
-        x = self.norm_final(x)
-        return x, mask, pos_enc
-
-    def chunk_forward(
-        self,
-        x: torch.Tensor,
-        pos_enc: torch.Tensor,
-        mask: torch.Tensor,
-        chunk_size: int = 16,
-        left_context: int = 0,
-        right_context: int = 0,
-    ) -> Tuple[torch.Tensor, torch.Tensor]:
-        """Encode chunk of input sequence.
-        Args:
-            x: Conformer input sequences. (B, T, D_block)
-            pos_enc: Positional embedding sequences. (B, 2 * (T - 1), D_block)
-            mask: Source mask. (B, T_2)
-            left_context: Number of frames in left context.
-            right_context: Number of frames in right context.
-        Returns:
-            x: Conformer output sequences. (B, T, D_block)
-            pos_enc: Positional embedding sequences. (B, 2 * (T - 1), D_block)
-        """
-        residual = x
-
-        x = self.norm_macaron(x)
-        x = residual + self.feed_forward_scale * self.feed_forward_macaron(x)
-
-        residual = x
-        x = self.norm_self_att(x)
-        if left_context > 0:
-            key = torch.cat([self.cache[0], x], dim=1)
-        else:
-            key = x
-        val = key
-
-        if right_context > 0:
-            att_cache = key[:, -(left_context + right_context) : -right_context, :]
-        else:
-            att_cache = key[:, -left_context:, :]
-        x = residual + self.self_att(
-            x,
-            key,
-            val,
-            pos_enc,
-            mask,
-            left_context=left_context,
-        )
-
-        residual = x
-        x = self.norm_conv(x)
-        x, conv_cache = self.conv_mod(
-            x, cache=self.cache[1], right_context=right_context
-        )
-        x = residual + x
-        residual = x
-
-        x = self.norm_feed_forward(x)
-        x = residual + self.feed_forward_scale * self.feed_forward(x)
-
-        x = self.norm_final(x)
-        self.cache = [att_cache, conv_cache]
-
-        return x, pos_enc
-
-
-
-class CausalConvolution(nn.Module):
-    """ConformerConvolution module definition.
-    Args:
-        channels: The number of channels.
-        kernel_size: Size of the convolving kernel.
-        activation: Type of activation function.
-        norm_args: Normalization module arguments.
-        causal: Whether to use causal convolution (set to True if streaming).
-    """
-
-    def __init__(
-        self,
-        channels: int,
-        kernel_size: int,
-        activation: torch.nn.Module = torch.nn.ReLU(),
-        norm_args: Dict = {},
-        causal: bool = False,
-    ) -> None:
-        """Construct an ConformerConvolution object."""
-        super().__init__()
-
-        assert (kernel_size - 1) % 2 == 0
-
-        self.kernel_size = kernel_size
-
-        self.pointwise_conv1 = torch.nn.Conv1d(
-            channels,
-            2 * channels,
-            kernel_size=1,
-            stride=1,
-            padding=0,
-        )
-
-        if causal:
-            self.lorder = kernel_size - 1
-            padding = 0
-        else:
-            self.lorder = 0
-            padding = (kernel_size - 1) // 2
-
-        self.depthwise_conv = torch.nn.Conv1d(
-            channels,
-            channels,
-            kernel_size,
-            stride=1,
-            padding=padding,
-            groups=channels,
-        )
-        self.norm = torch.nn.BatchNorm1d(channels, **norm_args)
-        self.pointwise_conv2 = torch.nn.Conv1d(
-            channels,
-            channels,
-            kernel_size=1,
-            stride=1,
-            padding=0,
-        )
-
-        self.activation = activation
-
-    def forward(
-        self,
-        x: torch.Tensor,
-        cache: Optional[torch.Tensor] = None,
-        right_context: int = 0,
-    ) -> Tuple[torch.Tensor, torch.Tensor]:
-        """Compute convolution module.
-        Args:
-            x: ConformerConvolution input sequences. (B, T, D_hidden)
-            cache: ConformerConvolution input cache. (1, conv_kernel, D_hidden)
-            right_context: Number of frames in right context.
-        Returns:
-            x: ConformerConvolution output sequences. (B, T, D_hidden)
-            cache: ConformerConvolution output cache. (1, conv_kernel, D_hidden)
-        """
-        x = self.pointwise_conv1(x.transpose(1, 2))
-        x = torch.nn.functional.glu(x, dim=1)
-
-        if self.lorder > 0:
-            if cache is None:
-                x = torch.nn.functional.pad(x, (self.lorder, 0), "constant", 0.0)
-            else:
-                x = torch.cat([cache, x], dim=2)
-
-                if right_context > 0:
-                    cache = x[:, :, -(self.lorder + right_context) : -right_context]
-                else:
-                    cache = x[:, :, -self.lorder :]
-
-        x = self.depthwise_conv(x)
-        x = self.activation(self.norm(x))
-
-        x = self.pointwise_conv2(x).transpose(1, 2)
-
-        return x, cache
-
-@tables.register("encoder_classes", "ConformerChunkEncoder")
-class ConformerChunkEncoder(nn.Module):
-    """Encoder module definition.
-    Args:
-        input_size: Input size.
-        body_conf: Encoder body configuration.
-        input_conf: Encoder input configuration.
-        main_conf: Encoder main configuration.
-    """
-
-    def __init__(
-        self,
-        input_size: int,
-        output_size: int = 256,
-        attention_heads: int = 4,
-        linear_units: int = 2048,
-        num_blocks: int = 6,
-        dropout_rate: float = 0.1,
-        positional_dropout_rate: float = 0.1,
-        attention_dropout_rate: float = 0.0,
-        embed_vgg_like: bool = False,
-        normalize_before: bool = True,
-        concat_after: bool = False,
-        positionwise_layer_type: str = "linear",
-        positionwise_conv_kernel_size: int = 3,
-        macaron_style: bool = False,
-        rel_pos_type: str = "legacy",
-        pos_enc_layer_type: str = "rel_pos",
-        selfattention_layer_type: str = "rel_selfattn",
-        activation_type: str = "swish",
-        use_cnn_module: bool = True,
-        zero_triu: bool = False,
-        norm_type: str = "layer_norm",
-        cnn_module_kernel: int = 31,
-        conv_mod_norm_eps: float = 0.00001,
-        conv_mod_norm_momentum: float = 0.1,
-        simplified_att_score: bool = False,
-        dynamic_chunk_training: bool = False,
-        short_chunk_threshold: float = 0.75,
-        short_chunk_size: int = 25,
-        left_chunk_size: int = 0,
-        time_reduction_factor: int = 1,
-        unified_model_training: bool = False,
-        default_chunk_size: int = 16,
-        jitter_range: int = 4,
-        subsampling_factor: int = 1,
-    ) -> None:
-        """Construct an Encoder object."""
-        super().__init__()
-
-
-        self.embed = StreamingConvInput(
-            input_size,
-            output_size,
-            subsampling_factor,
-            vgg_like=embed_vgg_like,
-            output_size=output_size,
-        )
-
-        self.pos_enc = StreamingRelPositionalEncoding(
-            output_size,
-            positional_dropout_rate,
-        )
-
-        activation = get_activation(
-            activation_type
-       )
-
-        pos_wise_args = (
-            output_size,
-            linear_units,
-            positional_dropout_rate,
-            activation,
-        )
-
-        conv_mod_norm_args = {
-            "eps": conv_mod_norm_eps,
-            "momentum": conv_mod_norm_momentum,
-        }
-
-        conv_mod_args = (
-            output_size,
-            cnn_module_kernel,
-            activation,
-            conv_mod_norm_args,
-            dynamic_chunk_training or unified_model_training,
-        )
-
-        mult_att_args = (
-            attention_heads,
-            output_size,
-            attention_dropout_rate,
-            simplified_att_score,
-        )
-
-
-        fn_modules = []
-        for _ in range(num_blocks):
-            module = lambda: ChunkEncoderLayer(
-                output_size,
-                RelPositionMultiHeadedAttentionChunk(*mult_att_args),
-                PositionwiseFeedForward(*pos_wise_args),
-                PositionwiseFeedForward(*pos_wise_args),
-                CausalConvolution(*conv_mod_args),
-                dropout_rate=dropout_rate,
-            )
-            fn_modules.append(module)
-
-        self.encoders = MultiBlocks(
-            [fn() for fn in fn_modules],
-            output_size,
-        )
-
-        self._output_size = output_size
-
-        self.dynamic_chunk_training = dynamic_chunk_training
-        self.short_chunk_threshold = short_chunk_threshold
-        self.short_chunk_size = short_chunk_size
-        self.left_chunk_size = left_chunk_size
-
-        self.unified_model_training = unified_model_training
-        self.default_chunk_size = default_chunk_size
-        self.jitter_range = jitter_range
-
-        self.time_reduction_factor = time_reduction_factor
-
-    def output_size(self) -> int:
-        return self._output_size
-
-    def get_encoder_input_raw_size(self, size: int, hop_length: int) -> int:
-        """Return the corresponding number of sample for a given chunk size, in frames.
-        Where size is the number of features frames after applying subsampling.
-        Args:
-            size: Number of frames after subsampling.
-            hop_length: Frontend's hop length
-        Returns:
-            : Number of raw samples
-        """
-        return self.embed.get_size_before_subsampling(size) * hop_length
-
-    def get_encoder_input_size(self, size: int) -> int:
-        """Return the corresponding number of sample for a given chunk size, in frames.
-        Where size is the number of features frames after applying subsampling.
-        Args:
-            size: Number of frames after subsampling.
-        Returns:
-            : Number of raw samples
-        """
-        return self.embed.get_size_before_subsampling(size)
-
-
-    def reset_streaming_cache(self, left_context: int, device: torch.device) -> None:
-        """Initialize/Reset encoder streaming cache.
-        Args:
-            left_context: Number of frames in left context.
-            device: Device ID.
-        """
-        return self.encoders.reset_streaming_cache(left_context, device)
-
-    def forward(
-        self,
-        x: torch.Tensor,
-        x_len: torch.Tensor,
-    ) -> Tuple[torch.Tensor, torch.Tensor]:
-        """Encode input sequences.
-        Args:
-            x: Encoder input features. (B, T_in, F)
-            x_len: Encoder input features lengths. (B,)
-        Returns:
-           x: Encoder outputs. (B, T_out, D_enc)
-           x_len: Encoder outputs lenghts. (B,)
-        """
-        short_status, limit_size = check_short_utt(
-            self.embed.subsampling_factor, x.size(1)
-        )
-
-        if short_status:
-            raise TooShortUttError(
-                f"has {x.size(1)} frames and is too short for subsampling "
-                + f"(it needs more than {limit_size} frames), return empty results",
-                x.size(1),
-                limit_size,
-            )
-
-        mask = make_source_mask(x_len).to(x.device)
-
-        if self.unified_model_training:
-            if self.training:
-                chunk_size = self.default_chunk_size + torch.randint(-self.jitter_range, self.jitter_range+1, (1,)).item()
-            else:
-                chunk_size = self.default_chunk_size
-            x, mask = self.embed(x, mask, chunk_size)
-            pos_enc = self.pos_enc(x)
-            chunk_mask = make_chunk_mask(
-                x.size(1),
-                chunk_size,
-                left_chunk_size=self.left_chunk_size,
-                device=x.device,
-            )
-            x_utt = self.encoders(
-                x,
-                pos_enc,
-                mask,
-                chunk_mask=None,
-            )
-            x_chunk = self.encoders(
-                x,
-                pos_enc,
-                mask,
-                chunk_mask=chunk_mask,
-            )
-
-            olens = mask.eq(0).sum(1)
-            if self.time_reduction_factor > 1:
-                x_utt = x_utt[:,::self.time_reduction_factor,:]
-                x_chunk = x_chunk[:,::self.time_reduction_factor,:]
-                olens = torch.floor_divide(olens-1, self.time_reduction_factor) + 1
-
-            return x_utt, x_chunk, olens
-
-        elif self.dynamic_chunk_training:
-            max_len = x.size(1)
-            if self.training:
-                chunk_size = torch.randint(1, max_len, (1,)).item()
-
-                if chunk_size > (max_len * self.short_chunk_threshold):
-                    chunk_size = max_len
-                else:
-                    chunk_size = (chunk_size % self.short_chunk_size) + 1
-            else:
-                chunk_size = self.default_chunk_size
-
-            x, mask = self.embed(x, mask, chunk_size)
-            pos_enc = self.pos_enc(x)
-
-            chunk_mask = make_chunk_mask(
-                x.size(1),
-                chunk_size,
-                left_chunk_size=self.left_chunk_size,
-                device=x.device,
-            )
-        else:
-            x, mask = self.embed(x, mask, None)
-            pos_enc = self.pos_enc(x)
-            chunk_mask = None
-        x = self.encoders(
-            x,
-            pos_enc,
-            mask,
-            chunk_mask=chunk_mask,
-        )
-
-        olens = mask.eq(0).sum(1)
-        if self.time_reduction_factor > 1:
-            x = x[:,::self.time_reduction_factor,:]
-            olens = torch.floor_divide(olens-1, self.time_reduction_factor) + 1
-
-        return x, olens, None
-
-    def full_utt_forward(
-        self,
-        x: torch.Tensor,
-        x_len: torch.Tensor,
-    ) -> Tuple[torch.Tensor, torch.Tensor]:
-        """Encode input sequences.
-        Args:
-            x: Encoder input features. (B, T_in, F)
-            x_len: Encoder input features lengths. (B,)
-        Returns:
-           x: Encoder outputs. (B, T_out, D_enc)
-           x_len: Encoder outputs lenghts. (B,)
-        """
-        short_status, limit_size = check_short_utt(
-            self.embed.subsampling_factor, x.size(1)
-        )
-
-        if short_status:
-            raise TooShortUttError(
-                f"has {x.size(1)} frames and is too short for subsampling "
-                + f"(it needs more than {limit_size} frames), return empty results",
-                x.size(1),
-                limit_size,
-            )
-
-        mask = make_source_mask(x_len).to(x.device)
-        x, mask = self.embed(x, mask, None)
-        pos_enc = self.pos_enc(x)
-        x_utt = self.encoders(
-            x,
-            pos_enc,
-            mask,
-            chunk_mask=None,
-        )
-
-        if self.time_reduction_factor > 1:
-            x_utt = x_utt[:,::self.time_reduction_factor,:]
-        return x_utt
-
-    def simu_chunk_forward(
-        self,
-        x: torch.Tensor,
-        x_len: torch.Tensor,
-        chunk_size: int = 16,
-        left_context: int = 32,
-        right_context: int = 0,
-    ) -> torch.Tensor:
-        short_status, limit_size = check_short_utt(
-            self.embed.subsampling_factor, x.size(1)
-        )
-
-        if short_status:
-            raise TooShortUttError(
-                f"has {x.size(1)} frames and is too short for subsampling "
-                + f"(it needs more than {limit_size} frames), return empty results",
-                x.size(1),
-                limit_size,
-            )
-
-        mask = make_source_mask(x_len)
-
-        x, mask = self.embed(x, mask, chunk_size)
-        pos_enc = self.pos_enc(x)
-        chunk_mask = make_chunk_mask(
-            x.size(1),
-            chunk_size,
-            left_chunk_size=self.left_chunk_size,
-            device=x.device,
-        )
-
-        x = self.encoders(
-            x,
-            pos_enc,
-            mask,
-            chunk_mask=chunk_mask,
-        )
-        olens = mask.eq(0).sum(1)
-        if self.time_reduction_factor > 1:
-            x = x[:,::self.time_reduction_factor,:]
-
-        return x
-
-    def chunk_forward(
-        self,
-        x: torch.Tensor,
-        x_len: torch.Tensor,
-        processed_frames: torch.tensor,
-        chunk_size: int = 16,
-        left_context: int = 32,
-        right_context: int = 0,
-    ) -> torch.Tensor:
-        """Encode input sequences as chunks.
-        Args:
-            x: Encoder input features. (1, T_in, F)
-            x_len: Encoder input features lengths. (1,)
-            processed_frames: Number of frames already seen.
-            left_context: Number of frames in left context.
-            right_context: Number of frames in right context.
-        Returns:
-           x: Encoder outputs. (B, T_out, D_enc)
-        """
-        mask = make_source_mask(x_len)
-        x, mask = self.embed(x, mask, None)
-
-        if left_context > 0:
-            processed_mask = (
-                torch.arange(left_context, device=x.device)
-                .view(1, left_context)
-                .flip(1)
-            )
-            processed_mask = processed_mask >= processed_frames
-            mask = torch.cat([processed_mask, mask], dim=1)
-        pos_enc = self.pos_enc(x, left_context=left_context)
-        x = self.encoders.chunk_forward(
-            x,
-            pos_enc,
-            mask,
-            chunk_size=chunk_size,
-            left_context=left_context,
-            right_context=right_context,
-        )
-
-        if right_context > 0:
-            x = x[:, 0:-right_context, :]
-
-        if self.time_reduction_factor > 1:
-            x = x[:,::self.time_reduction_factor,:]
-        return x

+ 338 - 298
funasr/models/bat/model.py

@@ -3,137 +3,145 @@
 # Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
 #  MIT License  (https://opensource.org/licenses/MIT)
 
-
+import time
 import torch
 import logging
-import torch.nn as nn
-
-from typing import Dict, List, Optional, Tuple, Union
-
-
-from torch.cuda.amp import autocast
-from funasr.losses.label_smoothing_loss import (
-    LabelSmoothingLoss,  # noqa: H301
-)
+from contextlib import contextmanager
+from typing import Dict, Optional, Tuple
+from distutils.version import LooseVersion
 
-from funasr.models.transformer.utils.nets_utils import get_transducer_task_io
-from funasr.models.transformer.utils.nets_utils import make_pad_mask
-from funasr.models.transformer.utils.add_sos_eos import add_sos_eos
+from funasr.register import tables
+from funasr.utils import postprocess_utils
+from funasr.utils.datadir_writer import DatadirWriter
 from funasr.train_utils.device_funcs import force_gatherable
+from funasr.models.transformer.scorers.ctc import CTCPrefixScorer
+from funasr.losses.label_smoothing_loss import LabelSmoothingLoss
+from funasr.models.transformer.scorers.length_bonus import LengthBonus
+from funasr.models.transformer.utils.nets_utils import get_transducer_task_io
+from funasr.utils.load_utils import load_audio_text_image_video, extract_fbank
+from funasr.models.transducer.beam_search_transducer import BeamSearchTransducer
 
 
+if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"):
+    from torch.cuda.amp import autocast
+else:
+    # Nothing to do if torch<1.6.0
+    @contextmanager
+    def autocast(enabled=True):
+        yield
 
 
-
-class BATModel(nn.Module):
-    """BATModel module definition.
-
-    Args:
-        vocab_size: Size of complete vocabulary (w/ EOS and blank included).
-        token_list: List of token
-        frontend: Frontend module.
-        specaug: SpecAugment module.
-        normalize: Normalization module.
-        encoder: Encoder module.
-        decoder: Decoder module.
-        joint_network: Joint Network module.
-        transducer_weight: Weight of the Transducer loss.
-        fastemit_lambda: FastEmit lambda value.
-        auxiliary_ctc_weight: Weight of auxiliary CTC loss.
-        auxiliary_ctc_dropout_rate: Dropout rate for auxiliary CTC loss inputs.
-        auxiliary_lm_loss_weight: Weight of auxiliary LM loss.
-        auxiliary_lm_loss_smoothing: Smoothing rate for LM loss' label smoothing.
-        ignore_id: Initial padding ID.
-        sym_space: Space symbol.
-        sym_blank: Blank Symbol
-        report_cer: Whether to report Character Error Rate during validation.
-        report_wer: Whether to report Word Error Rate during validation.
-        extract_feats_in_collect_stats: Whether to use extract_feats stats collection.
-
-    """
-
+@tables.register("model_classes", "BAT")  # TODO: BAT training
+class BAT(torch.nn.Module):
     def __init__(
         self,
-        
-        cif_weight: float = 1.0,
+        frontend: Optional[str] = None,
+        frontend_conf: Optional[Dict] = None,
+        specaug: Optional[str] = None,
+        specaug_conf: Optional[Dict] = None,
+        normalize: str = None,
+        normalize_conf: Optional[Dict] = None,
+        encoder: str = None,
+        encoder_conf: Optional[Dict] = None,
+        decoder: str = None,
+        decoder_conf: Optional[Dict] = None,
+        joint_network: str = None,
+        joint_network_conf: Optional[Dict] = None,
+        transducer_weight: float = 1.0,
         fastemit_lambda: float = 0.0,
         auxiliary_ctc_weight: float = 0.0,
         auxiliary_ctc_dropout_rate: float = 0.0,
         auxiliary_lm_loss_weight: float = 0.0,
         auxiliary_lm_loss_smoothing: float = 0.0,
+        input_size: int = 80,
+        vocab_size: int = -1,
         ignore_id: int = -1,
-        sym_space: str = "<space>",
-        sym_blank: str = "<blank>",
-        report_cer: bool = True,
-        report_wer: bool = True,
-        extract_feats_in_collect_stats: bool = True,
+        blank_id: int = 0,
+        sos: int = 1,
+        eos: int = 2,
         lsm_weight: float = 0.0,
         length_normalized_loss: bool = False,
-        r_d: int = 5,
-        r_u: int = 5,
+        # report_cer: bool = True,
+        # report_wer: bool = True,
+        # sym_space: str = "<space>",
+        # sym_blank: str = "<blank>",
+        # extract_feats_in_collect_stats: bool = True,
+        share_embedding: bool = False,
+        # preencoder: Optional[AbsPreEncoder] = None,
+        # postencoder: Optional[AbsPostEncoder] = None,
         **kwargs,
-    ) -> None:
-        """Construct an BATModel object."""
-        super().__init__()
+    ):
 
-        # The following labels ID are reserved: 0 (blank) and vocab_size - 1 (sos/eos)
-        self.blank_id = 0
-        self.vocab_size = vocab_size
-        self.ignore_id = ignore_id
-        self.token_list = token_list.copy()
-
-        self.sym_space = sym_space
-        self.sym_blank = sym_blank
-
-        self.frontend = frontend
-        self.specaug = specaug
-        self.normalize = normalize
-
-        self.encoder = encoder
-        self.decoder = decoder
-        self.joint_network = joint_network
+        super().__init__()
 
+        if specaug is not None:
+            specaug_class = tables.specaug_classes.get(specaug)
+            specaug = specaug_class(**specaug_conf)
+        if normalize is not None:
+            normalize_class = tables.normalize_classes.get(normalize)
+            normalize = normalize_class(**normalize_conf)
+        encoder_class = tables.encoder_classes.get(encoder)
+        encoder = encoder_class(input_size=input_size, **encoder_conf)
+        encoder_output_size = encoder.output_size()
+
+        decoder_class = tables.decoder_classes.get(decoder)
+        decoder = decoder_class(
+            vocab_size=vocab_size,
+            **decoder_conf,
+        )
+        decoder_output_size = decoder.output_size
+
+        joint_network_class = tables.joint_network_classes.get(joint_network)
+        joint_network = joint_network_class(
+            vocab_size,
+            encoder_output_size,
+            decoder_output_size,
+            **joint_network_conf,
+        )
+        
         self.criterion_transducer = None
         self.error_calculator = None
-
+        
         self.use_auxiliary_ctc = auxiliary_ctc_weight > 0
         self.use_auxiliary_lm_loss = auxiliary_lm_loss_weight > 0
-
+        
         if self.use_auxiliary_ctc:
             self.ctc_lin = torch.nn.Linear(encoder.output_size(), vocab_size)
             self.ctc_dropout_rate = auxiliary_ctc_dropout_rate
-
+        
         if self.use_auxiliary_lm_loss:
             self.lm_lin = torch.nn.Linear(decoder.output_size, vocab_size)
             self.lm_loss_smoothing = auxiliary_lm_loss_smoothing
-
+        
         self.transducer_weight = transducer_weight
         self.fastemit_lambda = fastemit_lambda
-
+        
         self.auxiliary_ctc_weight = auxiliary_ctc_weight
         self.auxiliary_lm_loss_weight = auxiliary_lm_loss_weight
+        self.blank_id = blank_id
+        self.sos = sos if sos is not None else vocab_size - 1
+        self.eos = eos if eos is not None else vocab_size - 1
+        self.vocab_size = vocab_size
+        self.ignore_id = ignore_id
+        self.frontend = frontend
+        self.specaug = specaug
+        self.normalize = normalize
+        self.encoder = encoder
+        self.decoder = decoder
+        self.joint_network = joint_network
 
-        self.report_cer = report_cer
-        self.report_wer = report_wer
-
-        self.extract_feats_in_collect_stats = extract_feats_in_collect_stats
-
-        self.criterion_pre = torch.nn.L1Loss()
-        self.predictor_weight = predictor_weight
-        self.predictor = predictor
-        
-        self.cif_weight = cif_weight
-        if self.cif_weight > 0:
-            self.cif_output_layer = torch.nn.Linear(encoder.output_size(), vocab_size)
-            self.criterion_cif = LabelSmoothingLoss(
-                size=vocab_size,
-                padding_idx=ignore_id,
-                smoothing=lsm_weight,
-                normalize_length=length_normalized_loss,
-            )        
-        self.r_d = r_d
-        self.r_u = r_u
+        self.criterion_att = LabelSmoothingLoss(
+            size=vocab_size,
+            padding_idx=ignore_id,
+            smoothing=lsm_weight,
+            normalize_length=length_normalized_loss,
+        )
 
+        self.length_normalized_loss = length_normalized_loss
+        self.beam_search = None
+        self.ctc = None
+        self.ctc_weight = 0.0
+    
     def forward(
         self,
         speech: torch.Tensor,
@@ -142,124 +150,51 @@ class BATModel(nn.Module):
         text_lengths: torch.Tensor,
         **kwargs,
     ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
-        """Forward architecture and compute loss(es).
-
+        """Encoder + Decoder + Calc loss
         Args:
-            speech: Speech sequences. (B, S)
-            speech_lengths: Speech sequences lengths. (B,)
-            text: Label ID sequences. (B, L)
-            text_lengths: Label ID sequences lengths. (B,)
-            kwargs: Contains "utts_id".
-
-        Return:
-            loss: Main loss value.
-            stats: Task statistics.
-            weight: Task weights.
-
+                speech: (Batch, Length, ...)
+                speech_lengths: (Batch, )
+                text: (Batch, Length)
+                text_lengths: (Batch,)
         """
-        assert text_lengths.dim() == 1, text_lengths.shape
-        assert (
-            speech.shape[0]
-            == speech_lengths.shape[0]
-            == text.shape[0]
-            == text_lengths.shape[0]
-        ), (speech.shape, speech_lengths.shape, text.shape, text_lengths.shape)
-
+        if len(text_lengths.size()) > 1:
+            text_lengths = text_lengths[:, 0]
+        if len(speech_lengths.size()) > 1:
+            speech_lengths = speech_lengths[:, 0]
+        
         batch_size = speech.shape[0]
-        text = text[:, : text_lengths.max()]
-
         # 1. Encoder
         encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
         if hasattr(self.encoder, 'overlap_chunk_cls') and self.encoder.overlap_chunk_cls is not None:
             encoder_out, encoder_out_lens = self.encoder.overlap_chunk_cls.remove_chunk(encoder_out, encoder_out_lens,
                                                                                         chunk_outs=None)
-
-        encoder_out_mask = (~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]).to(encoder_out.device)
         # 2. Transducer-related I/O preparation
         decoder_in, target, t_len, u_len = get_transducer_task_io(
             text,
             encoder_out_lens,
             ignore_id=self.ignore_id,
         )
-
+        
         # 3. Decoder
         self.decoder.set_device(encoder_out.device)
         decoder_out = self.decoder(decoder_in, u_len)
-
-        pre_acoustic_embeds, pre_token_length, _, pre_peak_index = self.predictor(encoder_out, text, encoder_out_mask, ignore_id=self.ignore_id)
-        loss_pre = self.criterion_pre(text_lengths.type_as(pre_token_length), pre_token_length)
-
-        if self.cif_weight > 0.0:
-            cif_predict = self.cif_output_layer(pre_acoustic_embeds)
-            loss_cif = self.criterion_cif(cif_predict, text)
-        else:
-            loss_cif = 0.0
-
-        # 5. Losses
-        boundary = torch.zeros((encoder_out.size(0), 4), dtype=torch.int64, device=encoder_out.device)
-        boundary[:, 2] = u_len.long().detach()
-        boundary[:, 3] = t_len.long().detach()
-
-        pre_peak_index = torch.floor(pre_peak_index).long()
-        s_begin = pre_peak_index - self.r_d
-
-        T = encoder_out.size(1)
-        B = encoder_out.size(0)
-        U = decoder_out.size(1)
-
-        mask = torch.arange(0, T, device=encoder_out.device).reshape(1, T).expand(B, T)
-        mask = mask <= boundary[:, 3].reshape(B, 1) - 1
-
-        s_begin_padding = boundary[:, 2].reshape(B, 1) - (self.r_u+self.r_d) + 1
-        # handle the cases where `len(symbols) < s_range`
-        s_begin_padding = torch.clamp(s_begin_padding, min=0)
-
-        s_begin = torch.where(mask, s_begin, s_begin_padding)
         
-        mask2 = s_begin <  boundary[:, 2].reshape(B, 1) - (self.r_u+self.r_d) + 1
-
-        s_begin = torch.where(mask2, s_begin, boundary[:, 2].reshape(B, 1) - (self.r_u+self.r_d) + 1)
-
-        s_begin = torch.clamp(s_begin, min=0)
+        # 4. Joint Network
+        joint_out = self.joint_network(
+            encoder_out.unsqueeze(2), decoder_out.unsqueeze(1)
+        )
         
-        ranges = s_begin.reshape((B, T, 1)).expand((B, T, min(self.r_u+self.r_d, min(u_len)))) + torch.arange(min(self.r_d+self.r_u, min(u_len)), device=encoder_out.device)
-
-        import fast_rnnt
-        am_pruned, lm_pruned = fast_rnnt.do_rnnt_pruning(
-            am=self.joint_network.lin_enc(encoder_out),
-            lm=self.joint_network.lin_dec(decoder_out),
-            ranges=ranges,
+        # 5. Losses
+        loss_trans, cer_trans, wer_trans = self._calc_transducer_loss(
+            encoder_out,
+            joint_out,
+            target,
+            t_len,
+            u_len,
         )
-
-        logits = self.joint_network(am_pruned, lm_pruned, project_input=False)
-
-        with torch.cuda.amp.autocast(enabled=False):
-            loss_trans = fast_rnnt.rnnt_loss_pruned(
-                logits=logits.float(),
-                symbols=target.long(),
-                ranges=ranges,
-                termination_symbol=self.blank_id,
-                boundary=boundary,
-                reduction="sum",
-            )
-
-        cer_trans, wer_trans = None, None
-        if not self.training and (self.report_cer or self.report_wer):
-            if self.error_calculator is None:
-                from funasr.metrics import ErrorCalculatorTransducer as ErrorCalculator
-                self.error_calculator = ErrorCalculator(
-                    self.decoder,
-                    self.joint_network,
-                    self.token_list,
-                    self.sym_space,
-                    self.sym_blank,
-                    report_cer=self.report_cer,
-                    report_wer=self.report_wer,
-                )
-            cer_trans, wer_trans = self.error_calculator(encoder_out, target, t_len)
-
+        
         loss_ctc, loss_lm = 0.0, 0.0
-
+        
         if self.use_auxiliary_ctc:
             loss_ctc = self._calc_ctc_loss(
                 encoder_out,
@@ -267,138 +202,131 @@ class BATModel(nn.Module):
                 t_len,
                 u_len,
             )
-
+        
         if self.use_auxiliary_lm_loss:
             loss_lm = self._calc_lm_loss(decoder_out, target)
-
+        
         loss = (
             self.transducer_weight * loss_trans
             + self.auxiliary_ctc_weight * loss_ctc
             + self.auxiliary_lm_loss_weight * loss_lm
-            + self.predictor_weight * loss_pre
-            + self.cif_weight * loss_cif
         )
-
+        
         stats = dict(
             loss=loss.detach(),
             loss_transducer=loss_trans.detach(),
-            loss_pre=loss_pre.detach(),
-            loss_cif=loss_cif.detach() if loss_cif > 0.0 else None,
             aux_ctc_loss=loss_ctc.detach() if loss_ctc > 0.0 else None,
             aux_lm_loss=loss_lm.detach() if loss_lm > 0.0 else None,
             cer_transducer=cer_trans,
             wer_transducer=wer_trans,
         )
-
+        
         # force_gatherable: to-device and to-tensor if scalar for DataParallel
         loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
-
+        
         return loss, stats, weight
 
-    def collect_feats(
-        self,
-        speech: torch.Tensor,
-        speech_lengths: torch.Tensor,
-        text: torch.Tensor,
-        text_lengths: torch.Tensor,
-        **kwargs,
-    ) -> Dict[str, torch.Tensor]:
-        """Collect features sequences and features lengths sequences.
-
-        Args:
-            speech: Speech sequences. (B, S)
-            speech_lengths: Speech sequences lengths. (B,)
-            text: Label ID sequences. (B, L)
-            text_lengths: Label ID sequences lengths. (B,)
-            kwargs: Contains "utts_id".
-
-        Return:
-            {}: "feats": Features sequences. (B, T, D_feats),
-                "feats_lengths": Features sequences lengths. (B,)
-
-        """
-        if self.extract_feats_in_collect_stats:
-            feats, feats_lengths = self._extract_feats(speech, speech_lengths)
-        else:
-            # Generate dummy stats if extract_feats_in_collect_stats is False
-            logging.warning(
-                "Generating dummy stats for feats and feats_lengths, "
-                "because encoder_conf.extract_feats_in_collect_stats is "
-                f"{self.extract_feats_in_collect_stats}"
-            )
-
-            feats, feats_lengths = speech, speech_lengths
-
-        return {"feats": feats, "feats_lengths": feats_lengths}
-
     def encode(
-        self,
-        speech: torch.Tensor,
-        speech_lengths: torch.Tensor,
+        self, speech: torch.Tensor, speech_lengths: torch.Tensor, **kwargs,
     ) -> Tuple[torch.Tensor, torch.Tensor]:
-        """Encoder speech sequences.
-
+        """Frontend + Encoder. Note that this method is used by asr_inference.py
         Args:
-            speech: Speech sequences. (B, S)
-            speech_lengths: Speech sequences lengths. (B,)
-
-        Return:
-            encoder_out: Encoder outputs. (B, T, D_enc)
-            encoder_out_lens: Encoder outputs lengths. (B,)
-
+                speech: (Batch, Length, ...)
+                speech_lengths: (Batch, )
+                ind: int
         """
         with autocast(False):
-            # 1. Extract feats
-            feats, feats_lengths = self._extract_feats(speech, speech_lengths)
 
-            # 2. Data augmentation
+            # Data augmentation
             if self.specaug is not None and self.training:
-                feats, feats_lengths = self.specaug(feats, feats_lengths)
-
-            # 3. Normalization for feature: e.g. Global-CMVN, Utterance-CMVN
+                speech, speech_lengths = self.specaug(speech, speech_lengths)
+            
+            # Normalization for feature: e.g. Global-CMVN, Utterance-CMVN
             if self.normalize is not None:
-                feats, feats_lengths = self.normalize(feats, feats_lengths)
-
-        # 4. Forward encoder
-        encoder_out, encoder_out_lens, _ = self.encoder(feats, feats_lengths)
-
-        assert encoder_out.size(0) == speech.size(0), (
-            encoder_out.size(),
-            speech.size(0),
-        )
-        assert encoder_out.size(1) <= encoder_out_lens.max(), (
-            encoder_out.size(),
-            encoder_out_lens.max(),
-        )
-
+                speech, speech_lengths = self.normalize(speech, speech_lengths)
+        
+        # Forward encoder
+        # feats: (Batch, Length, Dim)
+        # -> encoder_out: (Batch, Length2, Dim2)
+        encoder_out, encoder_out_lens, _ = self.encoder(speech, speech_lengths)
+        intermediate_outs = None
+        if isinstance(encoder_out, tuple):
+            intermediate_outs = encoder_out[1]
+            encoder_out = encoder_out[0]
+        
+        if intermediate_outs is not None:
+            return (encoder_out, intermediate_outs), encoder_out_lens
+        
         return encoder_out, encoder_out_lens
-
-    def _extract_feats(
-        self, speech: torch.Tensor, speech_lengths: torch.Tensor
-    ) -> Tuple[torch.Tensor, torch.Tensor]:
-        """Extract features sequences and features sequences lengths.
+    
+    def _calc_transducer_loss(
+        self,
+        encoder_out: torch.Tensor,
+        joint_out: torch.Tensor,
+        target: torch.Tensor,
+        t_len: torch.Tensor,
+        u_len: torch.Tensor,
+    ) -> Tuple[torch.Tensor, Optional[float], Optional[float]]:
+        """Compute Transducer loss.
 
         Args:
-            speech: Speech sequences. (B, S)
-            speech_lengths: Speech sequences lengths. (B,)
+            encoder_out: Encoder output sequences. (B, T, D_enc)
+            joint_out: Joint Network output sequences (B, T, U, D_joint)
+            target: Target label ID sequences. (B, L)
+            t_len: Encoder output sequences lengths. (B,)
+            u_len: Target label ID sequences lengths. (B,)
 
         Return:
-            feats: Features sequences. (B, T, D_feats)
-            feats_lengths: Features sequences lengths. (B,)
+            loss_transducer: Transducer loss value.
+            cer_transducer: Character error rate for Transducer.
+            wer_transducer: Word Error Rate for Transducer.
 
         """
-        assert speech_lengths.dim() == 1, speech_lengths.shape
-
-        # for data-parallel
-        speech = speech[:, : speech_lengths.max()]
-
-        if self.frontend is not None:
-            feats, feats_lengths = self.frontend(speech, speech_lengths)
-        else:
-            feats, feats_lengths = speech, speech_lengths
-
-        return feats, feats_lengths
-
+        if self.criterion_transducer is None:
+            try:
+                from warp_rnnt import rnnt_loss as RNNTLoss
+                self.criterion_transducer = RNNTLoss
+            
+            except ImportError:
+                logging.error(
+                    "warp-rnnt was not installed."
+                    "Please consult the installation documentation."
+                )
+                exit(1)
+        
+        log_probs = torch.log_softmax(joint_out, dim=-1)
+        
+        loss_transducer = self.criterion_transducer(
+            log_probs,
+            target,
+            t_len,
+            u_len,
+            reduction="mean",
+            blank=self.blank_id,
+            fastemit_lambda=self.fastemit_lambda,
+            gather=True,
+        )
+        
+        if not self.training and (self.report_cer or self.report_wer):
+            if self.error_calculator is None:
+                from funasr.metrics import ErrorCalculatorTransducer as ErrorCalculator
+                
+                self.error_calculator = ErrorCalculator(
+                    self.decoder,
+                    self.joint_network,
+                    self.token_list,
+                    self.sym_space,
+                    self.sym_blank,
+                    report_cer=self.report_cer,
+                    report_wer=self.report_wer,
+                )
+            
+            cer_transducer, wer_transducer = self.error_calculator(encoder_out, target, t_len)
+            
+            return loss_transducer, cer_transducer, wer_transducer
+        
+        return loss_transducer, None, None
+    
     def _calc_ctc_loss(
         self,
         encoder_out: torch.Tensor,
@@ -422,10 +350,10 @@ class BATModel(nn.Module):
             torch.nn.functional.dropout(encoder_out, p=self.ctc_dropout_rate)
         )
         ctc_in = torch.log_softmax(ctc_in.transpose(0, 1), dim=-1)
-
+        
         target_mask = target != 0
         ctc_target = target[target_mask].cpu()
-
+        
         with torch.backends.cudnn.flags(deterministic=True):
             loss_ctc = torch.nn.functional.ctc_loss(
                 ctc_in,
@@ -436,9 +364,9 @@ class BATModel(nn.Module):
                 reduction="sum",
             )
         loss_ctc /= target.size(0)
-
+        
         return loss_ctc
-
+    
     def _calc_lm_loss(
         self,
         decoder_out: torch.Tensor,
@@ -456,17 +384,17 @@ class BATModel(nn.Module):
         """
         lm_loss_in = self.lm_lin(decoder_out[:, :-1, :]).view(-1, self.vocab_size)
         lm_target = target.view(-1).type(torch.int64)
-
+        
         with torch.no_grad():
             true_dist = lm_loss_in.clone()
             true_dist.fill_(self.lm_loss_smoothing / (self.vocab_size - 1))
-
+            
             # Ignore blank ID (0)
             ignore = lm_target == 0
             lm_target = lm_target.masked_fill(ignore, 0)
-
+            
             true_dist.scatter_(1, lm_target.unsqueeze(1), (1 - self.lm_loss_smoothing))
-
+        
         loss_lm = torch.nn.functional.kl_div(
             torch.log_softmax(lm_loss_in, dim=1),
             true_dist,
@@ -475,5 +403,117 @@ class BATModel(nn.Module):
         loss_lm = loss_lm.masked_fill(ignore.unsqueeze(1), 0).sum() / decoder_out.size(
             0
         )
-
+        
         return loss_lm
+    
+    def init_beam_search(self,
+                         **kwargs,
+                         ):
+    
+        # 1. Build ASR model
+        scorers = {}
+        
+        if self.ctc != None:
+            ctc = CTCPrefixScorer(ctc=self.ctc, eos=self.eos)
+            scorers.update(
+                ctc=ctc
+            )
+        token_list = kwargs.get("token_list")
+        scorers.update(
+            length_bonus=LengthBonus(len(token_list)),
+        )
+
+        # 3. Build ngram model
+        # ngram is not supported now
+        ngram = None
+        scorers["ngram"] = ngram
+        
+        beam_search = BeamSearchTransducer(
+            self.decoder,
+            self.joint_network,
+            kwargs.get("beam_size", 2),
+            nbest=1,
+        )
+        # beam_search.to(device=kwargs.get("device", "cpu"), dtype=getattr(torch, kwargs.get("dtype", "float32"))).eval()
+        # for scorer in scorers.values():
+        #     if isinstance(scorer, torch.nn.Module):
+        #         scorer.to(device=kwargs.get("device", "cpu"), dtype=getattr(torch, kwargs.get("dtype", "float32"))).eval()
+        self.beam_search = beam_search
+        
+    def inference(self,
+                  data_in: list,
+                  data_lengths: list=None,
+                  key: list=None,
+                  tokenizer=None,
+                  **kwargs,
+                  ):
+        
+        if kwargs.get("batch_size", 1) > 1:
+            raise NotImplementedError("batch decoding is not implemented")
+        
+        # init beamsearch
+        is_use_ctc = kwargs.get("decoding_ctc_weight", 0.0) > 0.00001 and self.ctc != None
+        is_use_lm = kwargs.get("lm_weight", 0.0) > 0.00001 and kwargs.get("lm_file", None) is not None
+        # if self.beam_search is None and (is_use_lm or is_use_ctc):
+        logging.info("enable beam_search")
+        self.init_beam_search(**kwargs)
+        self.nbest = kwargs.get("nbest", 1)
+        
+        meta_data = {}
+        # extract fbank feats
+        time1 = time.perf_counter()
+        audio_sample_list = load_audio_text_image_video(data_in, fs=self.frontend.fs, audio_fs=kwargs.get("fs", 16000))
+        time2 = time.perf_counter()
+        meta_data["load_data"] = f"{time2 - time1:0.3f}"
+        speech, speech_lengths = extract_fbank(audio_sample_list, data_type=kwargs.get("data_type", "sound"), frontend=self.frontend)
+        time3 = time.perf_counter()
+        meta_data["extract_feat"] = f"{time3 - time2:0.3f}"
+        meta_data["batch_data_time"] = speech_lengths.sum().item() * self.frontend.frame_shift * self.frontend.lfr_n / 1000
+        
+        speech = speech.to(device=kwargs["device"])
+        speech_lengths = speech_lengths.to(device=kwargs["device"])
+
+        # Encoder
+        encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
+        if isinstance(encoder_out, tuple):
+            encoder_out = encoder_out[0]
+        
+        # c. Passed the encoder result and the beam search
+        nbest_hyps = self.beam_search(encoder_out[0], is_final=True)
+        nbest_hyps = nbest_hyps[: self.nbest]
+
+        results = []
+        b, n, d = encoder_out.size()
+        for i in range(b):
+
+            for nbest_idx, hyp in enumerate(nbest_hyps):
+                ibest_writer = None
+                if kwargs.get("output_dir") is not None:
+                    if not hasattr(self, "writer"):
+                        self.writer = DatadirWriter(kwargs.get("output_dir"))
+                    ibest_writer = self.writer[f"{nbest_idx + 1}best_recog"]
+                # remove sos/eos and get results
+                last_pos = -1
+                if isinstance(hyp.yseq, list):
+                    token_int = hyp.yseq#[1:last_pos]
+                else:
+                    token_int = hyp.yseq#[1:last_pos].tolist()
+                    
+                # remove blank symbol id, which is assumed to be 0
+                token_int = list(filter(lambda x: x != self.eos and x != self.sos and x != self.blank_id, token_int))
+                
+                # Change integer-ids to tokens
+                token = tokenizer.ids2tokens(token_int)
+                text = tokenizer.tokens2text(token)
+                
+                text_postprocessed, _ = postprocess_utils.sentence_postprocess(token)
+                result_i = {"key": key[i], "token": token, "text": text, "text_postprocessed": text_postprocessed}
+                results.append(result_i)
+                
+                if ibest_writer is not None:
+                    ibest_writer["token"][key[i]] = " ".join(token)
+                    ibest_writer["text"][key[i]] = text
+                    ibest_writer["text_postprocessed"][key[i]] = text_postprocessed
+        
+        return results, meta_data
+