|
@@ -0,0 +1,194 @@
|
|
|
|
|
+#!/usr/bin/env bash
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+CUDA_VISIBLE_DEVICES="0,1"
|
|
|
|
|
+
|
|
|
|
|
+# general configuration
|
|
|
|
|
+feats_dir="../DATA" #feature output dictionary
|
|
|
|
|
+exp_dir="."
|
|
|
|
|
+lang=zh
|
|
|
|
|
+token_type=char
|
|
|
|
|
+stage=0
|
|
|
|
|
+stop_stage=5
|
|
|
|
|
+
|
|
|
|
|
+# feature configuration
|
|
|
|
|
+nj=32
|
|
|
|
|
+
|
|
|
|
|
+inference_device="cuda" #"cpu"
|
|
|
|
|
+inference_checkpoint="model.pt"
|
|
|
|
|
+inference_scp="wav.scp"
|
|
|
|
|
+inference_batch_size=32
|
|
|
|
|
+
|
|
|
|
|
+# data
|
|
|
|
|
+raw_data=../raw_data
|
|
|
|
|
+data_url=www.openslr.org/resources/33
|
|
|
|
|
+
|
|
|
|
|
+# exp tag
|
|
|
|
|
+tag="exp1"
|
|
|
|
|
+workspace=`pwd`
|
|
|
|
|
+
|
|
|
|
|
+. utils/parse_options.sh || exit 1;
|
|
|
|
|
+
|
|
|
|
|
+# Set bash to 'debug' mode, it will exit on :
|
|
|
|
|
+# -e 'error', -u 'undefined variable', -o ... 'error in pipeline', -x 'print commands',
|
|
|
|
|
+set -e
|
|
|
|
|
+set -u
|
|
|
|
|
+set -o pipefail
|
|
|
|
|
+
|
|
|
|
|
+train_set=train
|
|
|
|
|
+valid_set=dev
|
|
|
|
|
+test_sets="dev test"
|
|
|
|
|
+
|
|
|
|
|
+config=paraformer_conformer_12e_6d_2048_256.yaml
|
|
|
|
|
+model_dir="baseline_$(basename "${config}" .yaml)_${lang}_${token_type}_${tag}"
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then
|
|
|
|
|
+ echo "stage -1: Data Download"
|
|
|
|
|
+ mkdir -p ${raw_data}
|
|
|
|
|
+ local/download_and_untar.sh ${raw_data} ${data_url} data_aishell
|
|
|
|
|
+ local/download_and_untar.sh ${raw_data} ${data_url} resource_aishell
|
|
|
|
|
+fi
|
|
|
|
|
+
|
|
|
|
|
+if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
|
|
|
|
|
+ echo "stage 0: Data preparation"
|
|
|
|
|
+ # Data preparation
|
|
|
|
|
+ local/aishell_data_prep.sh ${raw_data}/data_aishell/wav ${raw_data}/data_aishell/transcript ${feats_dir}
|
|
|
|
|
+ for x in train dev test; do
|
|
|
|
|
+ cp ${feats_dir}/data/${x}/text ${feats_dir}/data/${x}/text.org
|
|
|
|
|
+ paste -d " " <(cut -f 1 -d" " ${feats_dir}/data/${x}/text.org) <(cut -f 2- -d" " ${feats_dir}/data/${x}/text.org | tr -d " ") \
|
|
|
|
|
+ > ${feats_dir}/data/${x}/text
|
|
|
|
|
+ utils/text2token.py -n 1 -s 1 ${feats_dir}/data/${x}/text > ${feats_dir}/data/${x}/text.org
|
|
|
|
|
+ mv ${feats_dir}/data/${x}/text.org ${feats_dir}/data/${x}/text
|
|
|
|
|
+
|
|
|
|
|
+ # convert wav.scp text to jsonl
|
|
|
|
|
+ scp_file_list_arg="++scp_file_list='[\"${feats_dir}/data/${x}/wav.scp\",\"${feats_dir}/data/${x}/text\"]'"
|
|
|
|
|
+ python ../../../funasr/datasets/audio_datasets/scp2jsonl.py \
|
|
|
|
|
+ ++data_type_list='["source", "target"]' \
|
|
|
|
|
+ ++jsonl_file_out=${feats_dir}/data/${x}/audio_datasets.jsonl \
|
|
|
|
|
+ ${scp_file_list_arg}
|
|
|
|
|
+ done
|
|
|
|
|
+fi
|
|
|
|
|
+
|
|
|
|
|
+if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
|
|
|
|
|
+ echo "stage 1: Feature and CMVN Generation"
|
|
|
|
|
+ python ../../../funasr/bin/compute_audio_cmvn.py \
|
|
|
|
|
+ --config-path "${workspace}/conf" \
|
|
|
|
|
+ --config-name "${config}" \
|
|
|
|
|
+ ++train_data_set_list="${feats_dir}/data/${train_set}/audio_datasets.jsonl" \
|
|
|
|
|
+ ++cmvn_file="${feats_dir}/data/${train_set}/cmvn.json" \
|
|
|
|
|
+ ++dataset_conf.num_workers=$nj
|
|
|
|
|
+fi
|
|
|
|
|
+
|
|
|
|
|
+token_list=${feats_dir}/data/${lang}_token_list/$token_type/tokens.txt
|
|
|
|
|
+echo "dictionary: ${token_list}"
|
|
|
|
|
+if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
|
|
|
|
|
+ echo "stage 2: Dictionary Preparation"
|
|
|
|
|
+ mkdir -p ${feats_dir}/data/${lang}_token_list/$token_type/
|
|
|
|
|
+
|
|
|
|
|
+ echo "make a dictionary"
|
|
|
|
|
+ echo "<blank>" > ${token_list}
|
|
|
|
|
+ echo "<s>" >> ${token_list}
|
|
|
|
|
+ echo "</s>" >> ${token_list}
|
|
|
|
|
+ utils/text2token.py -s 1 -n 1 --space "" ${feats_dir}/data/$train_set/text | cut -f 2- -d" " | tr " " "\n" \
|
|
|
|
|
+ | sort | uniq | grep -a -v -e '^\s*$' | awk '{print $0}' >> ${token_list}
|
|
|
|
|
+ echo "<unk>" >> ${token_list}
|
|
|
|
|
+fi
|
|
|
|
|
+
|
|
|
|
|
+# LM Training Stage
|
|
|
|
|
+if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
|
|
|
|
|
+ echo "stage 3: LM Training"
|
|
|
|
|
+fi
|
|
|
|
|
+
|
|
|
|
|
+# ASR Training Stage
|
|
|
|
|
+if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
|
|
|
|
|
+ echo "stage 4: ASR Training"
|
|
|
|
|
+
|
|
|
|
|
+ mkdir -p ${exp_dir}/exp/${model_dir}
|
|
|
|
|
+ log_file="${exp_dir}/exp/${model_dir}/train.log.txt"
|
|
|
|
|
+ echo "log_file: ${log_file}"
|
|
|
|
|
+
|
|
|
|
|
+ gpu_num=$(echo CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
|
|
|
|
|
+ torchrun \
|
|
|
|
|
+ --nnodes 1 \
|
|
|
|
|
+ --nproc_per_node ${gpu_num} \
|
|
|
|
|
+ ../../../funasr/bin/train.py \
|
|
|
|
|
+ --config-path "${workspace}/conf" \
|
|
|
|
|
+ --config-name "${config}" \
|
|
|
|
|
+ ++train_data_set_list="${feats_dir}/data/${train_set}/audio_datasets.jsonl" \
|
|
|
|
|
+ ++valid_data_set_list="${feats_dir}/data/${valid_set}/audio_datasets.jsonl" \
|
|
|
|
|
+ ++tokenizer_conf.token_list="${token_list}" \
|
|
|
|
|
+ ++frontend_conf.cmvn_file="${feats_dir}/data/${train_set}/am.mvn" \
|
|
|
|
|
+ ++output_dir="${exp_dir}/exp/${model_dir}" &> ${log_file}
|
|
|
|
|
+fi
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+# Testing Stage
|
|
|
|
|
+if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
|
|
|
|
|
+ echo "stage 5: Inference"
|
|
|
|
|
+
|
|
|
|
|
+ if ${inference_device} == "cuda"; then
|
|
|
|
|
+ nj=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
|
|
|
|
|
+ else
|
|
|
|
|
+ inference_batch_size=1
|
|
|
|
|
+ CUDA_VISIBLE_DEVICES=""
|
|
|
|
|
+ for JOB in $(seq ${nj}); do
|
|
|
|
|
+ CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES"-1,"
|
|
|
|
|
+ done
|
|
|
|
|
+ fi
|
|
|
|
|
+
|
|
|
|
|
+ for dset in ${test_sets}; do
|
|
|
|
|
+
|
|
|
|
|
+ inference_dir="${exp_dir}/exp/${model_dir}/${inference_checkpoint}/${dset}"
|
|
|
|
|
+ _logdir="${inference_dir}/logdir"
|
|
|
|
|
+
|
|
|
|
|
+ mkdir -p "${_logdir}"
|
|
|
|
|
+ data_dir="${feats_dir}/data/${dset}"
|
|
|
|
|
+ key_file=${data_dir}/${inference_scp}
|
|
|
|
|
+
|
|
|
|
|
+ split_scps=
|
|
|
|
|
+ for JOB in $(seq "${nj}"); do
|
|
|
|
|
+ split_scps+=" ${_logdir}/keys.${JOB}.scp"
|
|
|
|
|
+ done
|
|
|
|
|
+ utils/split_scp.pl "${key_file}" ${split_scps}
|
|
|
|
|
+
|
|
|
|
|
+ gpuid_list_array=(${gpuid_list//,/ })
|
|
|
|
|
+ for JOB in $(seq ${nj}); do
|
|
|
|
|
+ {
|
|
|
|
|
+ id=$((JOB-1))
|
|
|
|
|
+ gpuid=${gpuid_list_array[$id]}
|
|
|
|
|
+
|
|
|
|
|
+ export CUDA_VISIBLE_DEVICES=${gpuid}
|
|
|
|
|
+ python ../../../funasr/bin/inference.py \
|
|
|
|
|
+ --config-path="${exp_dir}/exp/${model_dir}" \
|
|
|
|
|
+ --config-name="config.yaml" \
|
|
|
|
|
+ ++init_param="${exp_dir}/exp/${model_dir}/${inference_checkpoint}" \
|
|
|
|
|
+ ++tokenizer_conf.token_list="${token_list}" \
|
|
|
|
|
+ ++frontend_conf.cmvn_file="${feats_dir}/data/${train_set}/am.mvn" \
|
|
|
|
|
+ ++input="${_logdir}/keys.${JOB}.scp" \
|
|
|
|
|
+ ++output_dir="${inference_dir}/${JOB}" \
|
|
|
|
|
+ ++device="${inference_device}" \
|
|
|
|
|
+ ++batch_size="${inference_batch_size}"
|
|
|
|
|
+ }&
|
|
|
|
|
+
|
|
|
|
|
+ done
|
|
|
|
|
+ wait
|
|
|
|
|
+
|
|
|
|
|
+ mkdir -p ${inference_dir}/1best_recog
|
|
|
|
|
+ for f in token score text; do
|
|
|
|
|
+ if [ -f "${inference_dir}/${JOB}/1best_recog/${f}" ]; then
|
|
|
|
|
+ for JOB in $(seq "${nj}"); do
|
|
|
|
|
+ cat "${inference_dir}/${JOB}/1best_recog/${f}"
|
|
|
|
|
+ done | sort -k1 >"${inference_dir}/1best_recog/${f}"
|
|
|
|
|
+ fi
|
|
|
|
|
+ done
|
|
|
|
|
+
|
|
|
|
|
+ echo "Computing WER ..."
|
|
|
|
|
+ cp ${inference_dir}/1best_recog/text ${inference_dir}/1best_recog/text.proc
|
|
|
|
|
+ cp ${data_dir}/text ${inference_dir}/1best_recog/text.ref
|
|
|
|
|
+ python utils/compute_wer.py ${inference_dir}/1best_recog/text.ref ${inference_dir}/1best_recog/text.proc ${inference_dir}/1best_recog/text.cer
|
|
|
|
|
+ tail -n 3 ${inference_dir}/1best_recog/text.cer
|
|
|
|
|
+ done
|
|
|
|
|
+
|
|
|
|
|
+fi
|