|
|
@@ -0,0 +1,41 @@
|
|
|
+import os
|
|
|
+import logging
|
|
|
+import torch
|
|
|
+import soundfile
|
|
|
+
|
|
|
+from modelscope.pipelines import pipeline
|
|
|
+from modelscope.utils.constant import Tasks
|
|
|
+from modelscope.utils.logger import get_logger
|
|
|
+
|
|
|
+logger = get_logger(log_level=logging.CRITICAL)
|
|
|
+logger.setLevel(logging.CRITICAL)
|
|
|
+
|
|
|
+os.environ["MODELSCOPE_CACHE"] = "./"
|
|
|
+inference_pipeline = pipeline(
|
|
|
+ task=Tasks.auto_speech_recognition,
|
|
|
+ model='damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-online',
|
|
|
+ model_revision='v1.0.7',
|
|
|
+ update_model=False,
|
|
|
+ mode="paraformer_streaming"
|
|
|
+)
|
|
|
+
|
|
|
+model_dir = os.path.join(os.environ["MODELSCOPE_CACHE"], "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-online")
|
|
|
+speech, sample_rate = soundfile.read(os.path.join(model_dir, "example/asr_example.wav"))
|
|
|
+speech_length = speech.shape[0]
|
|
|
+
|
|
|
+sample_offset = 0
|
|
|
+chunk_size = [0, 8, 4] #[5, 10, 5] 600ms, [8, 8, 4] 480ms
|
|
|
+stride_size = chunk_size[1] * 960
|
|
|
+param_dict = {"cache": dict(), "is_final": False, "chunk_size": chunk_size, "encoder_chunk_look_back": 4, "decoder_chunk_look_back": 1}
|
|
|
+final_result = ""
|
|
|
+
|
|
|
+for sample_offset in range(0, speech_length, min(stride_size, speech_length - sample_offset)):
|
|
|
+ if sample_offset + stride_size >= speech_length - 1:
|
|
|
+ stride_size = speech_length - sample_offset
|
|
|
+ param_dict["is_final"] = True
|
|
|
+ rec_result = inference_pipeline(audio_in=speech[sample_offset: sample_offset + stride_size],
|
|
|
+ param_dict=param_dict)
|
|
|
+ if len(rec_result) != 0:
|
|
|
+ final_result += rec_result['text']
|
|
|
+ print(rec_result)
|
|
|
+print(final_result)
|