#!/usr/bin/env bash workspace=`pwd` # machines configuration CUDA_VISIBLE_DEVICES="0,1" gpu_num=2 gpu_inference=true # Whether to perform gpu decoding, set false for cpu decoding # for gpu decoding, inference_nj=ngpu*njob; for cpu decoding, inference_nj=njob njob=1 # general configuration feats_dir="../DATA" #feature output dictionary exp_dir="." lang=zh token_type=char stage=0 stop_stage=5 # feature configuration nj=64 # data raw_data=../raw_data data_url=www.openslr.org/resources/33 # exp tag tag="exp1" . utils/parse_options.sh || exit 1; # Set bash to 'debug' mode, it will exit on : # -e 'error', -u 'undefined variable', -o ... 'error in pipeline', -x 'print commands', set -e set -u set -o pipefail train_set=train valid_set=dev test_sets="dev test" asr_config=train_asr_paraformer_conformer_12e_6d_2048_256.yaml model_dir="baseline_$(basename "${asr_config}" .yaml)_${lang}_${token_type}_${tag}" #inference_config=conf/decode_asr_transformer_noctc_1best.yaml #inference_asr_model=valid.acc.ave_10best.pb ## you can set gpu num for decoding here #gpuid_list=$CUDA_VISIBLE_DEVICES # set gpus for decoding, the same as training stage by default #ngpu=$(echo $gpuid_list | awk -F "," '{print NF}') # #if ${gpu_inference}; then # inference_nj=$[${ngpu}*${njob}] # _ngpu=1 #else # inference_nj=$njob # _ngpu=0 #fi if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then echo "stage -1: Data Download" local/download_and_untar.sh ${raw_data} ${data_url} data_aishell local/download_and_untar.sh ${raw_data} ${data_url} resource_aishell fi if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then echo "stage 0: Data preparation" # Data preparation local/aishell_data_prep.sh ${raw_data}/data_aishell/wav ${raw_data}/data_aishell/transcript ${feats_dir} for x in train dev test; do cp ${feats_dir}/data/${x}/text ${feats_dir}/data/${x}/text.org paste -d " " <(cut -f 1 -d" " ${feats_dir}/data/${x}/text.org) <(cut -f 2- -d" " ${feats_dir}/data/${x}/text.org | tr -d " ") \ > ${feats_dir}/data/${x}/text utils/text2token.py -n 1 -s 1 ${feats_dir}/data/${x}/text > ${feats_dir}/data/${x}/text.org mv ${feats_dir}/data/${x}/text.org ${feats_dir}/data/${x}/text # convert wav.scp text to jsonl scp_file_list_arg="++scp_file_list='[\"${feats_dir}/data/${x}/wav.scp\",\"${feats_dir}/data/${x}/text\"]'" python ../../../funasr/datasets/audio_datasets/scp2jsonl.py \ ++data_type_list='["source", "target"]' \ ++jsonl_file_out=${feats_dir}/data/${x}/audio_datasets.jsonl \ ${scp_file_list_arg} done fi if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then echo "stage 1: Feature and CMVN Generation" # utils/compute_cmvn.sh --fbankdir ${feats_dir}/data/${train_set} --cmd "$train_cmd" --nj $nj --feats_dim ${feats_dim} --config_file "$asr_config" --scale 1.0 python ../../../funasr/bin/compute_audio_cmvn.py \ --config-path "${workspace}" \ --config-name "${asr_config}" \ ++train_data_set_list="${feats_dir}/data/${train_set}/audio_datasets.jsonl" \ ++cmvn_file="${feats_dir}/data/${train_set}/cmvn.json" \ ++dataset_conf.num_workers=$nj fi token_list=${feats_dir}/data/${lang}_token_list/$token_type/tokens.txt echo "dictionary: ${token_list}" if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then echo "stage 2: Dictionary Preparation" mkdir -p ${feats_dir}/data/${lang}_token_list/$token_type/ echo "make a dictionary" echo "" > ${token_list} echo "" >> ${token_list} echo "" >> ${token_list} utils/text2token.py -s 1 -n 1 --space "" ${feats_dir}/data/$train_set/text | cut -f 2- -d" " | tr " " "\n" \ | sort | uniq | grep -a -v -e '^\s*$' | awk '{print $0}' >> ${token_list} echo "" >> ${token_list} fi # LM Training Stage if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then echo "stage 3: LM Training" fi # ASR Training Stage if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then echo "stage 4: ASR Training" torchrun \ --nnodes 1 \ --nproc_per_node ${gpu_num} \ ../../../funasr/bin/train.py \ --config-path "${workspace}" \ --config-name "${asr_config}" \ ++train_data_set_list="${feats_dir}/data/${train_set}/audio_datasets.jsonl" \ ++cmvn_file="${feats_dir}/data/${train_set}/am.mvn" \ ++token_list="${token_list}" \ ++output_dir="${exp_dir}/exp/${model_dir}" fi # ## Testing Stage #if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then # echo "stage 5: Inference" # for dset in ${test_sets}; do # asr_exp=${exp_dir}/exp/${model_dir} # inference_tag="$(basename "${inference_config}" .yaml)" # _dir="${asr_exp}/${inference_tag}/${inference_asr_model}/${dset}" # _logdir="${_dir}/logdir" # if [ -d ${_dir} ]; then # echo "${_dir} is already exists. if you want to decode again, please delete this dir first." # exit 0 # fi # mkdir -p "${_logdir}" # _data="${feats_dir}/data/${dset}" # key_file=${_data}/${scp} # num_scp_file="$(<${key_file} wc -l)" # _nj=$([ $inference_nj -le $num_scp_file ] && echo "$inference_nj" || echo "$num_scp_file") # split_scps= # for n in $(seq "${_nj}"); do # split_scps+=" ${_logdir}/keys.${n}.scp" # done # # shellcheck disable=SC2086 # utils/split_scp.pl "${key_file}" ${split_scps} # _opts= # if [ -n "${inference_config}" ]; then # _opts+="--config ${inference_config} " # fi # ${infer_cmd} --gpu "${_ngpu}" --max-jobs-run "${_nj}" JOB=1:"${_nj}" "${_logdir}"/asr_inference.JOB.log \ # python -m funasr.bin.asr_inference_launch \ # --batch_size 1 \ # --ngpu "${_ngpu}" \ # --njob ${njob} \ # --gpuid_list ${gpuid_list} \ # --data_path_and_name_and_type "${_data}/${scp},speech,${type}" \ # --cmvn_file ${feats_dir}/data/${train_set}/cmvn/am.mvn \ # --key_file "${_logdir}"/keys.JOB.scp \ # --asr_train_config "${asr_exp}"/config.yaml \ # --asr_model_file "${asr_exp}"/"${inference_asr_model}" \ # --output_dir "${_logdir}"/output.JOB \ # --mode paraformer \ # ${_opts} # # for f in token token_int score text; do # if [ -f "${_logdir}/output.1/1best_recog/${f}" ]; then # for i in $(seq "${_nj}"); do # cat "${_logdir}/output.${i}/1best_recog/${f}" # done | sort -k1 >"${_dir}/${f}" # fi # done # python utils/proce_text.py ${_dir}/text ${_dir}/text.proc # python utils/proce_text.py ${_data}/text ${_data}/text.proc # python utils/compute_wer.py ${_data}/text.proc ${_dir}/text.proc ${_dir}/text.cer # tail -n 3 ${_dir}/text.cer > ${_dir}/text.cer.txt # cat ${_dir}/text.cer.txt # done #fi # ## Prepare files for ModelScope fine-tuning and inference #if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then # echo "stage 6: ModelScope Preparation" # cp ${feats_dir}/data/${train_set}/cmvn/am.mvn ${exp_dir}/exp/${model_dir}/am.mvn # vocab_size=$(cat ${token_list} | wc -l) # python utils/gen_modelscope_configuration.py \ # --am_model_name $inference_asr_model \ # --mode paraformer \ # --model_name paraformer \ # --dataset aishell \ # --output_dir $exp_dir/exp/$model_dir \ # --vocab_size $vocab_size \ # --nat _nat \ # --tag $tag #fi