# This is an example that demonstrates how to configure a model file. # You can modify the configuration according to your own requirements. # to print the register_table: # from funasr.register import tables # tables.print() # network architecture model: LLMASRNAR model_conf: lsm_weight: 0.1 # label smoothing option length_normalized_loss: true # encoder encoder: Paraformer encoder_conf: hub: funasr init_param_path: "iic/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" freeze: false llm: Vicuna llm_conf: hub: hf init_param_path: "/nfs/maziyang.mzy/models/vicuna-7b-v1.5" freeze: true adaptor: linear adaptor_conf: downsample_rate: 1 llm_dim: 4096 encoder_dim: 2048 # frontend related frontend: WavFrontend frontend_conf: fs: 16000 window: hamming n_mels: 80 frame_length: 25 frame_shift: 10 dither: 0.0 lfr_m: 1 lfr_n: 1 specaug: SpecAug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 30 num_freq_mask: 2 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2 train_conf: accum_grad: 1 grad_clip: 5 max_epoch: 150 keep_nbest_models: 10 log_interval: 50 optim: adam optim_conf: lr: 0.001 weight_decay: 0.000001 scheduler: warmuplr scheduler_conf: warmup_steps: 35000 dataset: AudioLLMDataset dataset_conf: index_ds: IndexDSJsonl batch_sampler: RankFullLocalShuffleBatchSampler batch_type: example # example or length batch_size: 4 # if batch_type is example, batch_size is the numbers of samples; if length, batch_size is source_token_len+target_token_len; max_token_length: 2048 # filter samples if source_token_len+target_token_len > max_token_length, buffer_size: 500 shuffle: True num_workers: 4 tokenizer: HuggingfaceTokenizer tokenizer_conf: unk_symbol: init_param_path: null