([简体中文](./README_zh.md)|English) # Speech Recognition > **Note**: > The modelscope pipeline supports all the models in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/model_zoo/modelscope_models.html#pretrained-models-on-modelscope) to inference and finetine. Here we take the typic models as examples to demonstrate the usage. ## Inference ### Quick start #### [Paraformer Model](https://www.modelscope.cn/models/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/summary) ```python from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks inference_pipeline = pipeline( task=Tasks.auto_speech_recognition, model='damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch', ) rec_result = inference_pipeline(audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav') print(rec_result) ``` #### [Paraformer-online Model](https://www.modelscope.cn/models/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-online/summary) ##### Streaming Decoding ```python inference_pipeline = pipeline( task=Tasks.auto_speech_recognition, model='damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-online', model_revision='v1.0.6', update_model=False, mode='paraformer_streaming' ) import soundfile speech, sample_rate = soundfile.read("example/asr_example.wav") chunk_size = [5, 10, 5] #[5, 10, 5] 600ms, [8, 8, 4] 480ms param_dict = {"cache": dict(), "is_final": False, "chunk_size": chunk_size} chunk_stride = chunk_size[1] * 960 # 600ms、480ms # first chunk, 600ms speech_chunk = speech[0:chunk_stride] rec_result = inference_pipeline(audio_in=speech_chunk, param_dict=param_dict) print(rec_result) # next chunk, 600ms speech_chunk = speech[chunk_stride:chunk_stride+chunk_stride] rec_result = inference_pipeline(audio_in=speech_chunk, param_dict=param_dict) print(rec_result) ``` ##### Fake Streaming Decoding ```python from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks inference_pipeline = pipeline( task=Tasks.auto_speech_recognition, model='damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-online', model_revision='v1.0.6', update_model=False, mode="paraformer_fake_streaming" ) audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav' rec_result = inference_pipeline(audio_in=audio_in) print(rec_result) ``` Full code of demo, please ref to [demo](https://github.com/alibaba-damo-academy/FunASR/discussions/241) #### [UniASR Model](https://www.modelscope.cn/models/damo/speech_UniASR_asr_2pass-zh-cn-8k-common-vocab3445-pytorch-online/summary) There are three decoding mode for UniASR model(`fast`、`normal`、`offline`), for more model details, please refer to [docs](https://www.modelscope.cn/models/damo/speech_UniASR_asr_2pass-zh-cn-8k-common-vocab3445-pytorch-online/summary) ```python decoding_model = "fast" # "fast"、"normal"、"offline" inference_pipeline = pipeline( task=Tasks.auto_speech_recognition, model='damo/speech_UniASR_asr_2pass-minnan-16k-common-vocab3825', param_dict={"decoding_model": decoding_model}) rec_result = inference_pipeline(audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav') print(rec_result) ``` The decoding mode of `fast` and `normal` is fake streaming, which could be used for evaluating of recognition accuracy. Full code of demo, please ref to [demo](https://github.com/alibaba-damo-academy/FunASR/discussions/151) #### [RNN-T-online model]() Undo #### [MFCCA Model](https://www.modelscope.cn/models/NPU-ASLP/speech_mfcca_asr-zh-cn-16k-alimeeting-vocab4950/summary) For more model details, please refer to [docs](https://www.modelscope.cn/models/NPU-ASLP/speech_mfcca_asr-zh-cn-16k-alimeeting-vocab4950/summary) ```python from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks inference_pipeline = pipeline( task=Tasks.auto_speech_recognition, model='NPU-ASLP/speech_mfcca_asr-zh-cn-16k-alimeeting-vocab4950', model_revision='v3.0.0' ) rec_result = inference_pipeline(audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav') print(rec_result) ``` ### API-reference #### Define pipeline - `task`: `Tasks.auto_speech_recognition` - `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/model_zoo/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk - `ngpu`: `1` (Default), decoding on GPU. If ngpu=0, decoding on CPU - `ncpu`: `1` (Default), sets the number of threads used for intraop parallelism on CPU - `output_dir`: `None` (Default), the output path of results if set - `batch_size`: `1` (Default), batch size when decoding #### Infer pipeline - `audio_in`: the input to decode, which could be: - wav_path, `e.g.`: asr_example.wav, - pcm_path, `e.g.`: asr_example.pcm, - audio bytes stream, `e.g.`: bytes data from a microphone - audio sample point,`e.g.`: `audio, rate = soundfile.read("asr_example_zh.wav")`, the dtype is numpy.ndarray or torch.Tensor - wav.scp, kaldi style wav list (`wav_id \t wav_path`), `e.g.`: ```text asr_example1 ./audios/asr_example1.wav asr_example2 ./audios/asr_example2.wav ``` In this case of `wav.scp` input, `output_dir` must be set to save the output results - `audio_fs`: audio sampling rate, only set when audio_in is pcm audio - `output_dir`: None (Default), the output path of results if set ### Inference with multi-thread CPUs or multi GPUs FunASR also offer recipes [egs_modelscope/asr/TEMPLATE/infer.sh](https://github.com/alibaba-damo-academy/FunASR/blob/main/egs_modelscope/asr/TEMPLATE/infer.sh) to decode with multi-thread CPUs, or multi GPUs. #### Settings of `infer.sh` - `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/model_zoo/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk - `data_dir`: the dataset dir needs to include `wav.scp`. If `${data_dir}/text` is also exists, CER will be computed - `output_dir`: output dir of the recognition results - `batch_size`: `64` (Default), batch size of inference on gpu - `gpu_inference`: `true` (Default), whether to perform gpu decoding, set false for CPU inference - `gpuid_list`: `0,1` (Default), which gpu_ids are used to infer - `njob`: only used for CPU inference (`gpu_inference`=`false`), `64` (Default), the number of jobs for CPU decoding - `checkpoint_dir`: only used for infer finetuned models, the path dir of finetuned models - `checkpoint_name`: only used for infer finetuned models, `valid.cer_ctc.ave.pb` (Default), which checkpoint is used to infer - `decoding_mode`: `normal` (Default), decoding mode for UniASR model(fast、normal、offline) - `hotword_txt`: `None` (Default), hotword file for contextual paraformer model(the hotword file name ends with .txt") #### Decode with multi GPUs: ```shell bash infer.sh \ --model "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \ --data_dir "./data/test" \ --output_dir "./results" \ --batch_size 64 \ --gpu_inference true \ --gpuid_list "0,1" ``` #### Decode with multi-thread CPUs: ```shell bash infer.sh \ --model "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \ --data_dir "./data/test" \ --output_dir "./results" \ --gpu_inference false \ --njob 64 ``` #### Results The decoding results can be found in `$output_dir/1best_recog/text.cer`, which includes recognition results of each sample and the CER metric of the whole test set. If you decode the SpeechIO test sets, you can use textnorm with `stage`=3, and `DETAILS.txt`, `RESULTS.txt` record the results and CER after text normalization. ## Finetune with pipeline ### Quick start [finetune.py](https://github.com/alibaba-damo-academy/FunASR/blob/main/egs_modelscope/asr/TEMPLATE/finetune.py) ```python import os from modelscope.metainfo import Trainers from modelscope.trainers import build_trainer from funasr.datasets.ms_dataset import MsDataset from funasr.utils.modelscope_param import modelscope_args def modelscope_finetune(params): if not os.path.exists(params.output_dir): os.makedirs(params.output_dir, exist_ok=True) # dataset split ["train", "validation"] ds_dict = MsDataset.load(params.data_path) kwargs = dict( model=params.model, data_dir=ds_dict, dataset_type=params.dataset_type, work_dir=params.output_dir, batch_bins=params.batch_bins, max_epoch=params.max_epoch, lr=params.lr, mate_params=params.param_dict) trainer = build_trainer(Trainers.speech_asr_trainer, default_args=kwargs) trainer.train() if __name__ == '__main__': params = modelscope_args(model="damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch", data_path="./data") params.output_dir = "./checkpoint" # m模型保存路径 params.data_path = "./example_data/" # 数据路径 params.dataset_type = "small" # 小数据量设置small,若数据量大于1000小时,请使用large params.batch_bins = 2000 # batch size,如果dataset_type="small",batch_bins单位为fbank特征帧数,如果dataset_type="large",batch_bins单位为毫秒, params.max_epoch = 20 # 最大训练轮数 params.lr = 0.00005 # 设置学习率 init_param = [] # 初始模型路径,默认加载modelscope模型初始化,例如: ["checkpoint/20epoch.pb"] freeze_param = [] # 模型参数freeze, 例如: ["encoder"] ignore_init_mismatch = True # 是否忽略模型参数初始化不匹配 use_lora = False # 是否使用lora进行模型微调 params.param_dict = {"init_param":init_param, "freeze_param": freeze_param, "ignore_init_mismatch": ignore_init_mismatch} if use_lora: enable_lora = True lora_bias = "all" lora_params = {"lora_list":['q','v'], "lora_rank":8, "lora_alpha":16, "lora_dropout":0.1} lora_config = {"enable_lora": enable_lora, "lora_bias": lora_bias, "lora_params": lora_params} params.param_dict.update(lora_config) modelscope_finetune(params) ``` ```shell python finetune.py &> log.txt & ``` ### Finetune with your data - Modify finetune training related parameters in [finetune.py](https://github.com/alibaba-damo-academy/FunASR/blob/main/egs_modelscope/asr/TEMPLATE/finetune.py) - `output_dir`: result dir - `data_dir`: the dataset dir needs to include files: `train/wav.scp`, `train/text`; `validation/wav.scp`, `validation/text` - `dataset_type`: for dataset larger than 1000 hours, set as `large`, otherwise set as `small` - `batch_bins`: batch size. For dataset_type is `small`, `batch_bins` indicates the feature frames. For dataset_type is `large`, `batch_bins` indicates the duration in ms - `max_epoch`: number of training epoch - `lr`: learning rate - `init_param`: `[]`(Default), init model path, load modelscope model initialization by default. For example: ["checkpoint/20epoch.pb"] - `freeze_param`: `[]`(Default), Freeze model parameters. For example:["encoder"] - `ignore_init_mismatch`: `True`(Default), Ignore size mismatch when loading pre-trained model - `use_lora`: `False`(Default), Fine-tuning model use lora, more detail please refer to [LORA](https://arxiv.org/pdf/2106.09685.pdf) - Training data formats: ```sh cat ./example_data/text BAC009S0002W0122 而 对 楼 市 成 交 抑 制 作 用 最 大 的 限 购 BAC009S0002W0123 也 成 为 地 方 政 府 的 眼 中 钉 english_example_1 hello world english_example_2 go swim 去 游 泳 cat ./example_data/wav.scp BAC009S0002W0122 /mnt/data/wav/train/S0002/BAC009S0002W0122.wav BAC009S0002W0123 /mnt/data/wav/train/S0002/BAC009S0002W0123.wav english_example_1 /mnt/data/wav/train/S0002/english_example_1.wav english_example_2 /mnt/data/wav/train/S0002/english_example_2.wav ``` - Then you can run the pipeline to finetune with: ```shell python finetune.py ``` If you want finetune with multi-GPUs, you could: ```shell CUDA_VISIBLE_DEVICES=1,2 python -m torch.distributed.launch --nproc_per_node 2 finetune.py > log.txt 2>&1 ``` ## Inference with your finetuned model - Setting parameters in [egs_modelscope/asr/TEMPLATE/infer.sh](https://github.com/alibaba-damo-academy/FunASR/blob/main/egs_modelscope/asr/TEMPLATE/infer.sh) is the same with [docs](https://github.com/alibaba-damo-academy/FunASR/tree/main/egs_modelscope/asr/TEMPLATE#inference-with-multi-thread-cpus-or-multi-gpus), `model` is the model name from modelscope, which you finetuned. - Decode with multi GPUs: ```shell bash infer.sh \ --model "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \ --data_dir "./data/test" \ --output_dir "./results" \ --batch_size 64 \ --gpu_inference true \ --gpuid_list "0,1" \ --checkpoint_dir "./checkpoint" \ --checkpoint_name "valid.cer_ctc.ave.pb" ``` - Decode with multi-thread CPUs: ```shell bash infer.sh \ --model "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \ --data_dir "./data/test" \ --output_dir "./results" \ --gpu_inference false \ --njob 64 \ --checkpoint_dir "./checkpoint" \ --checkpoint_name "valid.cer_ctc.ave.pb" ```