| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566 |
- #!/usr/bin/env python3
- # -*- encoding: utf-8 -*-
- # Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
- # MIT License (https://opensource.org/licenses/MIT)
- import time
- import torch
- import logging
- from typing import Dict, Tuple
- from contextlib import contextmanager
- from distutils.version import LooseVersion
- from funasr.register import tables
- from funasr.models.ctc.ctc import CTC
- from funasr.utils import postprocess_utils
- from funasr.metrics.compute_acc import th_accuracy
- from funasr.utils.datadir_writer import DatadirWriter
- from funasr.models.paraformer.model import Paraformer
- from funasr.models.paraformer.search import Hypothesis
- from funasr.models.paraformer.cif_predictor import mae_loss
- from funasr.train_utils.device_funcs import force_gatherable
- from funasr.losses.label_smoothing_loss import LabelSmoothingLoss
- from funasr.models.transformer.utils.add_sos_eos import add_sos_eos
- from funasr.models.transformer.utils.nets_utils import make_pad_mask, pad_list
- from funasr.utils.load_utils import load_audio_text_image_video, extract_fbank
- if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"):
- from torch.cuda.amp import autocast
- else:
- # Nothing to do if torch<1.6.0
- @contextmanager
- def autocast(enabled=True):
- yield
- @tables.register("model_classes", "ParaformerStreaming")
- class ParaformerStreaming(Paraformer):
- """
- Author: Speech Lab of DAMO Academy, Alibaba Group
- Paraformer: Fast and Accurate Parallel Transformer for Non-autoregressive End-to-End Speech Recognition
- https://arxiv.org/abs/2206.08317
- """
-
- def __init__(
- self,
- *args,
- **kwargs,
- ):
-
- super().__init__(*args, **kwargs)
-
- # import pdb;
- # pdb.set_trace()
- self.sampling_ratio = kwargs.get("sampling_ratio", 0.2)
- self.scama_mask = None
- if hasattr(self.encoder, "overlap_chunk_cls") and self.encoder.overlap_chunk_cls is not None:
- from funasr.models.scama.chunk_utilis import build_scama_mask_for_cross_attention_decoder
- self.build_scama_mask_for_cross_attention_decoder_fn = build_scama_mask_for_cross_attention_decoder
- self.decoder_attention_chunk_type = kwargs.get("decoder_attention_chunk_type", "chunk")
-
- def forward(
- self,
- speech: torch.Tensor,
- speech_lengths: torch.Tensor,
- text: torch.Tensor,
- text_lengths: torch.Tensor,
- **kwargs,
- ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
- """Encoder + Decoder + Calc loss
- Args:
- speech: (Batch, Length, ...)
- speech_lengths: (Batch, )
- text: (Batch, Length)
- text_lengths: (Batch,)
- """
- # import pdb;
- # pdb.set_trace()
- decoding_ind = kwargs.get("decoding_ind")
- if len(text_lengths.size()) > 1:
- text_lengths = text_lengths[:, 0]
- if len(speech_lengths.size()) > 1:
- speech_lengths = speech_lengths[:, 0]
-
- batch_size = speech.shape[0]
-
- # Encoder
- if hasattr(self.encoder, "overlap_chunk_cls"):
- ind = self.encoder.overlap_chunk_cls.random_choice(self.training, decoding_ind)
- encoder_out, encoder_out_lens = self.encode(speech, speech_lengths, ind=ind)
- else:
- encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
-
- loss_ctc, cer_ctc = None, None
- loss_pre = None
- stats = dict()
-
- # decoder: CTC branch
- if self.ctc_weight > 0.0:
- if hasattr(self.encoder, "overlap_chunk_cls"):
- encoder_out_ctc, encoder_out_lens_ctc = self.encoder.overlap_chunk_cls.remove_chunk(encoder_out,
- encoder_out_lens,
- chunk_outs=None)
- else:
- encoder_out_ctc, encoder_out_lens_ctc = encoder_out, encoder_out_lens
-
- loss_ctc, cer_ctc = self._calc_ctc_loss(
- encoder_out_ctc, encoder_out_lens_ctc, text, text_lengths
- )
- # Collect CTC branch stats
- stats["loss_ctc"] = loss_ctc.detach() if loss_ctc is not None else None
- stats["cer_ctc"] = cer_ctc
-
- # decoder: Attention decoder branch
- loss_att, acc_att, cer_att, wer_att, loss_pre, pre_loss_att = self._calc_att_predictor_loss(
- encoder_out, encoder_out_lens, text, text_lengths
- )
-
- # 3. CTC-Att loss definition
- if self.ctc_weight == 0.0:
- loss = loss_att + loss_pre * self.predictor_weight
- else:
- loss = self.ctc_weight * loss_ctc + (
- 1 - self.ctc_weight) * loss_att + loss_pre * self.predictor_weight
-
- # Collect Attn branch stats
- stats["loss_att"] = loss_att.detach() if loss_att is not None else None
- stats["pre_loss_att"] = pre_loss_att.detach() if pre_loss_att is not None else None
- stats["acc"] = acc_att
- stats["cer"] = cer_att
- stats["wer"] = wer_att
- stats["loss_pre"] = loss_pre.detach().cpu() if loss_pre is not None else None
-
- stats["loss"] = torch.clone(loss.detach())
-
- # force_gatherable: to-device and to-tensor if scalar for DataParallel
- if self.length_normalized_loss:
- batch_size = (text_lengths + self.predictor_bias).sum()
- loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
- return loss, stats, weight
-
- def encode_chunk(
- self, speech: torch.Tensor, speech_lengths: torch.Tensor, cache: dict = None, **kwargs,
- ) -> Tuple[torch.Tensor, torch.Tensor]:
- """Frontend + Encoder. Note that this method is used by asr_inference.py
- Args:
- speech: (Batch, Length, ...)
- speech_lengths: (Batch, )
- ind: int
- """
- with autocast(False):
-
- # Data augmentation
- if self.specaug is not None and self.training:
- speech, speech_lengths = self.specaug(speech, speech_lengths)
-
- # Normalization for feature: e.g. Global-CMVN, Utterance-CMVN
- if self.normalize is not None:
- speech, speech_lengths = self.normalize(speech, speech_lengths)
-
- # Forward encoder
- encoder_out, encoder_out_lens, _ = self.encoder.forward_chunk(speech, speech_lengths, cache=cache["encoder"])
- if isinstance(encoder_out, tuple):
- encoder_out = encoder_out[0]
-
- return encoder_out, torch.tensor([encoder_out.size(1)])
-
- def _calc_att_predictor_loss(
- self,
- encoder_out: torch.Tensor,
- encoder_out_lens: torch.Tensor,
- ys_pad: torch.Tensor,
- ys_pad_lens: torch.Tensor,
- ):
- encoder_out_mask = (~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]).to(
- encoder_out.device)
- if self.predictor_bias == 1:
- _, ys_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id)
- ys_pad_lens = ys_pad_lens + self.predictor_bias
- mask_chunk_predictor = None
- if self.encoder.overlap_chunk_cls is not None:
- mask_chunk_predictor = self.encoder.overlap_chunk_cls.get_mask_chunk_predictor(None,
- device=encoder_out.device,
- batch_size=encoder_out.size(
- 0))
- mask_shfit_chunk = self.encoder.overlap_chunk_cls.get_mask_shfit_chunk(None, device=encoder_out.device,
- batch_size=encoder_out.size(0))
- encoder_out = encoder_out * mask_shfit_chunk
- pre_acoustic_embeds, pre_token_length, pre_alphas, _ = self.predictor(encoder_out,
- ys_pad,
- encoder_out_mask,
- ignore_id=self.ignore_id,
- mask_chunk_predictor=mask_chunk_predictor,
- target_label_length=ys_pad_lens,
- )
- predictor_alignments, predictor_alignments_len = self.predictor.gen_frame_alignments(pre_alphas,
- encoder_out_lens)
-
- scama_mask = None
- if self.encoder.overlap_chunk_cls is not None and self.decoder_attention_chunk_type == 'chunk':
- encoder_chunk_size = self.encoder.overlap_chunk_cls.chunk_size_pad_shift_cur
- attention_chunk_center_bias = 0
- attention_chunk_size = encoder_chunk_size
- decoder_att_look_back_factor = self.encoder.overlap_chunk_cls.decoder_att_look_back_factor_cur
- mask_shift_att_chunk_decoder = self.encoder.overlap_chunk_cls. \
- get_mask_shift_att_chunk_decoder(None,
- device=encoder_out.device,
- batch_size=encoder_out.size(0)
- )
- scama_mask = self.build_scama_mask_for_cross_attention_decoder_fn(
- predictor_alignments=predictor_alignments,
- encoder_sequence_length=encoder_out_lens,
- chunk_size=1,
- encoder_chunk_size=encoder_chunk_size,
- attention_chunk_center_bias=attention_chunk_center_bias,
- attention_chunk_size=attention_chunk_size,
- attention_chunk_type=self.decoder_attention_chunk_type,
- step=None,
- predictor_mask_chunk_hopping=mask_chunk_predictor,
- decoder_att_look_back_factor=decoder_att_look_back_factor,
- mask_shift_att_chunk_decoder=mask_shift_att_chunk_decoder,
- target_length=ys_pad_lens,
- is_training=self.training,
- )
- elif self.encoder.overlap_chunk_cls is not None:
- encoder_out, encoder_out_lens = self.encoder.overlap_chunk_cls.remove_chunk(encoder_out,
- encoder_out_lens,
- chunk_outs=None)
- # 0. sampler
- decoder_out_1st = None
- pre_loss_att = None
- if self.sampling_ratio > 0.0:
- if self.step_cur < 2:
- logging.info("enable sampler in paraformer, sampling_ratio: {}".format(self.sampling_ratio))
- if self.use_1st_decoder_loss:
- sematic_embeds, decoder_out_1st, pre_loss_att = \
- self.sampler_with_grad(encoder_out, encoder_out_lens, ys_pad,
- ys_pad_lens, pre_acoustic_embeds, scama_mask)
- else:
- sematic_embeds, decoder_out_1st = \
- self.sampler(encoder_out, encoder_out_lens, ys_pad,
- ys_pad_lens, pre_acoustic_embeds, scama_mask)
- else:
- if self.step_cur < 2:
- logging.info("disable sampler in paraformer, sampling_ratio: {}".format(self.sampling_ratio))
- sematic_embeds = pre_acoustic_embeds
-
- # 1. Forward decoder
- decoder_outs = self.decoder(
- encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens, scama_mask
- )
- decoder_out, _ = decoder_outs[0], decoder_outs[1]
-
- if decoder_out_1st is None:
- decoder_out_1st = decoder_out
- # 2. Compute attention loss
- loss_att = self.criterion_att(decoder_out, ys_pad)
- acc_att = th_accuracy(
- decoder_out_1st.view(-1, self.vocab_size),
- ys_pad,
- ignore_label=self.ignore_id,
- )
- loss_pre = self.criterion_pre(ys_pad_lens.type_as(pre_token_length), pre_token_length)
-
- # Compute cer/wer using attention-decoder
- if self.training or self.error_calculator is None:
- cer_att, wer_att = None, None
- else:
- ys_hat = decoder_out_1st.argmax(dim=-1)
- cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu())
-
- return loss_att, acc_att, cer_att, wer_att, loss_pre, pre_loss_att
-
- def sampler(self, encoder_out, encoder_out_lens, ys_pad, ys_pad_lens, pre_acoustic_embeds, chunk_mask=None):
-
- tgt_mask = (~make_pad_mask(ys_pad_lens, maxlen=ys_pad_lens.max())[:, :, None]).to(ys_pad.device)
- ys_pad_masked = ys_pad * tgt_mask[:, :, 0]
- if self.share_embedding:
- ys_pad_embed = self.decoder.output_layer.weight[ys_pad_masked]
- else:
- ys_pad_embed = self.decoder.embed(ys_pad_masked)
- with torch.no_grad():
- decoder_outs = self.decoder(
- encoder_out, encoder_out_lens, pre_acoustic_embeds, ys_pad_lens, chunk_mask
- )
- decoder_out, _ = decoder_outs[0], decoder_outs[1]
- pred_tokens = decoder_out.argmax(-1)
- nonpad_positions = ys_pad.ne(self.ignore_id)
- seq_lens = (nonpad_positions).sum(1)
- same_num = ((pred_tokens == ys_pad) & nonpad_positions).sum(1)
- input_mask = torch.ones_like(nonpad_positions)
- bsz, seq_len = ys_pad.size()
- for li in range(bsz):
- target_num = (((seq_lens[li] - same_num[li].sum()).float()) * self.sampling_ratio).long()
- if target_num > 0:
- input_mask[li].scatter_(dim=0, index=torch.randperm(seq_lens[li])[:target_num].cuda(), value=0)
- input_mask = input_mask.eq(1)
- input_mask = input_mask.masked_fill(~nonpad_positions, False)
- input_mask_expand_dim = input_mask.unsqueeze(2).to(pre_acoustic_embeds.device)
-
- sematic_embeds = pre_acoustic_embeds.masked_fill(~input_mask_expand_dim, 0) + ys_pad_embed.masked_fill(
- input_mask_expand_dim, 0)
- return sematic_embeds * tgt_mask, decoder_out * tgt_mask
-
- def calc_predictor(self, encoder_out, encoder_out_lens):
-
- encoder_out_mask = (~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]).to(
- encoder_out.device)
- mask_chunk_predictor = None
- if self.encoder.overlap_chunk_cls is not None:
- mask_chunk_predictor = self.encoder.overlap_chunk_cls.get_mask_chunk_predictor(None,
- device=encoder_out.device,
- batch_size=encoder_out.size(
- 0))
- mask_shfit_chunk = self.encoder.overlap_chunk_cls.get_mask_shfit_chunk(None, device=encoder_out.device,
- batch_size=encoder_out.size(0))
- encoder_out = encoder_out * mask_shfit_chunk
- pre_acoustic_embeds, pre_token_length, pre_alphas, pre_peak_index = self.predictor(encoder_out,
- None,
- encoder_out_mask,
- ignore_id=self.ignore_id,
- mask_chunk_predictor=mask_chunk_predictor,
- target_label_length=None,
- )
- predictor_alignments, predictor_alignments_len = self.predictor.gen_frame_alignments(pre_alphas,
- encoder_out_lens + 1 if self.predictor.tail_threshold > 0.0 else encoder_out_lens)
-
- scama_mask = None
- if self.encoder.overlap_chunk_cls is not None and self.decoder_attention_chunk_type == 'chunk':
- encoder_chunk_size = self.encoder.overlap_chunk_cls.chunk_size_pad_shift_cur
- attention_chunk_center_bias = 0
- attention_chunk_size = encoder_chunk_size
- decoder_att_look_back_factor = self.encoder.overlap_chunk_cls.decoder_att_look_back_factor_cur
- mask_shift_att_chunk_decoder = self.encoder.overlap_chunk_cls. \
- get_mask_shift_att_chunk_decoder(None,
- device=encoder_out.device,
- batch_size=encoder_out.size(0)
- )
- scama_mask = self.build_scama_mask_for_cross_attention_decoder_fn(
- predictor_alignments=predictor_alignments,
- encoder_sequence_length=encoder_out_lens,
- chunk_size=1,
- encoder_chunk_size=encoder_chunk_size,
- attention_chunk_center_bias=attention_chunk_center_bias,
- attention_chunk_size=attention_chunk_size,
- attention_chunk_type=self.decoder_attention_chunk_type,
- step=None,
- predictor_mask_chunk_hopping=mask_chunk_predictor,
- decoder_att_look_back_factor=decoder_att_look_back_factor,
- mask_shift_att_chunk_decoder=mask_shift_att_chunk_decoder,
- target_length=None,
- is_training=self.training,
- )
- self.scama_mask = scama_mask
-
- return pre_acoustic_embeds, pre_token_length, pre_alphas, pre_peak_index
-
- def calc_predictor_chunk(self, encoder_out, encoder_out_lens, cache=None, **kwargs):
- is_final = kwargs.get("is_final", False)
- return self.predictor.forward_chunk(encoder_out, cache["encoder"], is_final=is_final)
-
- def cal_decoder_with_predictor(self, encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens):
- decoder_outs = self.decoder(
- encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens, self.scama_mask
- )
- decoder_out = decoder_outs[0]
- decoder_out = torch.log_softmax(decoder_out, dim=-1)
- return decoder_out, ys_pad_lens
-
- def cal_decoder_with_predictor_chunk(self, encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens, cache=None):
- decoder_outs = self.decoder.forward_chunk(
- encoder_out, sematic_embeds, cache["decoder"]
- )
- decoder_out = decoder_outs
- decoder_out = torch.log_softmax(decoder_out, dim=-1)
- return decoder_out, ys_pad_lens
-
- def init_cache(self, cache: dict = {}, **kwargs):
- chunk_size = kwargs.get("chunk_size", [0, 10, 5])
- encoder_chunk_look_back = kwargs.get("encoder_chunk_look_back", 0)
- decoder_chunk_look_back = kwargs.get("decoder_chunk_look_back", 0)
- batch_size = 1
- enc_output_size = kwargs["encoder_conf"]["output_size"]
- feats_dims = kwargs["frontend_conf"]["n_mels"] * kwargs["frontend_conf"]["lfr_m"]
- cache_encoder = {"start_idx": 0, "cif_hidden": torch.zeros((batch_size, 1, enc_output_size)),
- "cif_alphas": torch.zeros((batch_size, 1)), "chunk_size": chunk_size,
- "encoder_chunk_look_back": encoder_chunk_look_back, "last_chunk": False, "opt": None,
- "feats": torch.zeros((batch_size, chunk_size[0] + chunk_size[2], feats_dims)),
- "tail_chunk": False}
- cache["encoder"] = cache_encoder
-
- cache_decoder = {"decode_fsmn": None, "decoder_chunk_look_back": decoder_chunk_look_back, "opt": None,
- "chunk_size": chunk_size}
- cache["decoder"] = cache_decoder
- cache["frontend"] = {}
- cache["prev_samples"] = torch.empty(0)
-
- return cache
-
- def generate_chunk(self,
- speech,
- speech_lengths=None,
- key: list = None,
- tokenizer=None,
- frontend=None,
- **kwargs,
- ):
- cache = kwargs.get("cache", {})
- speech = speech.to(device=kwargs["device"])
- speech_lengths = speech_lengths.to(device=kwargs["device"])
-
- # Encoder
- encoder_out, encoder_out_lens = self.encode_chunk(speech, speech_lengths, cache=cache, is_final=kwargs.get("is_final", False))
- if isinstance(encoder_out, tuple):
- encoder_out = encoder_out[0]
-
- # predictor
- predictor_outs = self.calc_predictor_chunk(encoder_out, encoder_out_lens, cache=cache, is_final=kwargs.get("is_final", False))
- pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index = predictor_outs[0], predictor_outs[1], \
- predictor_outs[2], predictor_outs[3]
- pre_token_length = pre_token_length.round().long()
- if torch.max(pre_token_length) < 1:
- return []
- decoder_outs = self.cal_decoder_with_predictor_chunk(encoder_out,
- encoder_out_lens,
- pre_acoustic_embeds,
- pre_token_length,
- cache=cache
- )
- decoder_out, ys_pad_lens = decoder_outs[0], decoder_outs[1]
- results = []
- b, n, d = decoder_out.size()
- if isinstance(key[0], (list, tuple)):
- key = key[0]
- for i in range(b):
- x = encoder_out[i, :encoder_out_lens[i], :]
- am_scores = decoder_out[i, :pre_token_length[i], :]
- if self.beam_search is not None:
- nbest_hyps = self.beam_search(
- x=x, am_scores=am_scores, maxlenratio=kwargs.get("maxlenratio", 0.0),
- minlenratio=kwargs.get("minlenratio", 0.0)
- )
-
- nbest_hyps = nbest_hyps[: self.nbest]
- else:
-
- yseq = am_scores.argmax(dim=-1)
- score = am_scores.max(dim=-1)[0]
- score = torch.sum(score, dim=-1)
- # pad with mask tokens to ensure compatibility with sos/eos tokens
- yseq = torch.tensor(
- [self.sos] + yseq.tolist() + [self.eos], device=yseq.device
- )
- nbest_hyps = [Hypothesis(yseq=yseq, score=score)]
- for nbest_idx, hyp in enumerate(nbest_hyps):
-
- # remove sos/eos and get results
- last_pos = -1
- if isinstance(hyp.yseq, list):
- token_int = hyp.yseq[1:last_pos]
- else:
- token_int = hyp.yseq[1:last_pos].tolist()
-
- # remove blank symbol id, which is assumed to be 0
- token_int = list(filter(lambda x: x != self.eos and x != self.sos and x != self.blank_id, token_int))
-
- # Change integer-ids to tokens
- token = tokenizer.ids2tokens(token_int)
- # text = tokenizer.tokens2text(token)
-
- result_i = token
- results.extend(result_i)
-
- return results
-
- def inference(self,
- data_in,
- data_lengths=None,
- key: list = None,
- tokenizer=None,
- frontend=None,
- cache: dict={},
- **kwargs,
- ):
- # init beamsearch
- is_use_ctc = kwargs.get("decoding_ctc_weight", 0.0) > 0.00001 and self.ctc != None
- is_use_lm = kwargs.get("lm_weight", 0.0) > 0.00001 and kwargs.get("lm_file", None) is not None
- if self.beam_search is None and (is_use_lm or is_use_ctc):
- logging.info("enable beam_search")
- self.init_beam_search(**kwargs)
- self.nbest = kwargs.get("nbest", 1)
-
- if len(cache) == 0:
- self.init_cache(cache, **kwargs)
-
-
- meta_data = {}
- chunk_size = kwargs.get("chunk_size", [0, 10, 5])
- chunk_stride_samples = int(chunk_size[1] * 960) # 600ms
-
- time1 = time.perf_counter()
- cfg = {"is_final": kwargs.get("is_final", False)}
- audio_sample_list = load_audio_text_image_video(data_in,
- fs=frontend.fs,
- audio_fs=kwargs.get("fs", 16000),
- data_type=kwargs.get("data_type", "sound"),
- tokenizer=tokenizer,
- cache=cfg,
- )
- _is_final = cfg["is_final"] # if data_in is a file or url, set is_final=True
-
- time2 = time.perf_counter()
- meta_data["load_data"] = f"{time2 - time1:0.3f}"
- assert len(audio_sample_list) == 1, "batch_size must be set 1"
-
- audio_sample = torch.cat((cache["prev_samples"], audio_sample_list[0]))
-
- n = int(len(audio_sample) // chunk_stride_samples + int(_is_final))
- m = int(len(audio_sample) % chunk_stride_samples * (1-int(_is_final)))
- tokens = []
- for i in range(n):
- kwargs["is_final"] = _is_final and i == n -1
- audio_sample_i = audio_sample[i*chunk_stride_samples:(i+1)*chunk_stride_samples]
- # extract fbank feats
- speech, speech_lengths = extract_fbank([audio_sample_i], data_type=kwargs.get("data_type", "sound"),
- frontend=frontend, cache=cache["frontend"], is_final=kwargs["is_final"])
- time3 = time.perf_counter()
- meta_data["extract_feat"] = f"{time3 - time2:0.3f}"
- meta_data["batch_data_time"] = speech_lengths.sum().item() * frontend.frame_shift * frontend.lfr_n / 1000
-
- tokens_i = self.generate_chunk(speech, speech_lengths, key=key, tokenizer=tokenizer, cache=cache, frontend=frontend, **kwargs)
- tokens.extend(tokens_i)
-
- text_postprocessed, _ = postprocess_utils.sentence_postprocess(tokens)
-
- result_i = {"key": key[0], "text": text_postprocessed}
- result = [result_i]
-
-
- cache["prev_samples"] = audio_sample[:-m]
- if _is_final:
- self.init_cache(cache, **kwargs)
-
- if kwargs.get("output_dir"):
- writer = DatadirWriter(kwargs.get("output_dir"))
- ibest_writer = writer[f"{1}best_recog"]
- ibest_writer["token"][key[0]] = " ".join(tokens)
- ibest_writer["text"][key[0]] = text_postprocessed
-
- return result, meta_data
|