| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199 |
- #!/usr/bin/env bash
- CUDA_VISIBLE_DEVICES="0,1"
- # general configuration
- feats_dir="../DATA" #feature output dictionary
- exp_dir="."
- lang=zh
- token_type=char
- stage=0
- stop_stage=5
- # feature configuration
- nj=32
- inference_device="cuda" #"cpu"
- inference_checkpoint="model.pt"
- inference_scp="wav.scp"
- inference_batch_size=32
- # data
- raw_data=../raw_data
- data_url=www.openslr.org/resources/33
- # exp tag
- tag="exp1"
- workspace=`pwd`
- . utils/parse_options.sh || exit 1;
- # Set bash to 'debug' mode, it will exit on :
- # -e 'error', -u 'undefined variable', -o ... 'error in pipeline', -x 'print commands',
- set -e
- set -u
- set -o pipefail
- train_set=train
- valid_set=dev
- test_sets="dev test"
- config=paraformer_conformer_12e_6d_2048_256.yaml
- model_dir="baseline_$(basename "${config}" .yaml)_${lang}_${token_type}_${tag}"
- if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then
- echo "stage -1: Data Download"
- mkdir -p ${raw_data}
- local/download_and_untar.sh ${raw_data} ${data_url} data_aishell
- local/download_and_untar.sh ${raw_data} ${data_url} resource_aishell
- fi
- if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
- echo "stage 0: Data preparation"
- # Data preparation
- local/aishell_data_prep.sh ${raw_data}/data_aishell/wav ${raw_data}/data_aishell/transcript ${feats_dir}
- for x in train dev test; do
- cp ${feats_dir}/data/${x}/text ${feats_dir}/data/${x}/text.org
- paste -d " " <(cut -f 1 -d" " ${feats_dir}/data/${x}/text.org) <(cut -f 2- -d" " ${feats_dir}/data/${x}/text.org | tr -d " ") \
- > ${feats_dir}/data/${x}/text
- utils/text2token.py -n 1 -s 1 ${feats_dir}/data/${x}/text > ${feats_dir}/data/${x}/text.org
- mv ${feats_dir}/data/${x}/text.org ${feats_dir}/data/${x}/text
- # convert wav.scp text to jsonl
- scp_file_list_arg="++scp_file_list='[\"${feats_dir}/data/${x}/wav.scp\",\"${feats_dir}/data/${x}/text\"]'"
- python ../../../funasr/datasets/audio_datasets/scp2jsonl.py \
- ++data_type_list='["source", "target"]' \
- ++jsonl_file_out=${feats_dir}/data/${x}/audio_datasets.jsonl \
- ${scp_file_list_arg}
- done
- fi
- if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
- echo "stage 1: Feature and CMVN Generation"
- python ../../../funasr/bin/compute_audio_cmvn.py \
- --config-path "${workspace}/conf" \
- --config-name "${config}" \
- ++train_data_set_list="${feats_dir}/data/${train_set}/audio_datasets.jsonl" \
- ++cmvn_file="${feats_dir}/data/${train_set}/cmvn.json" \
- ++dataset_conf.num_workers=$nj
- fi
- token_list=${feats_dir}/data/${lang}_token_list/$token_type/tokens.txt
- echo "dictionary: ${token_list}"
- if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
- echo "stage 2: Dictionary Preparation"
- mkdir -p ${feats_dir}/data/${lang}_token_list/$token_type/
-
- echo "make a dictionary"
- echo "<blank>" > ${token_list}
- echo "<s>" >> ${token_list}
- echo "</s>" >> ${token_list}
- utils/text2token.py -s 1 -n 1 --space "" ${feats_dir}/data/$train_set/text | cut -f 2- -d" " | tr " " "\n" \
- | sort | uniq | grep -a -v -e '^\s*$' | awk '{print $0}' >> ${token_list}
- echo "<unk>" >> ${token_list}
- fi
- # LM Training Stage
- if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
- echo "stage 3: LM Training"
- fi
- # ASR Training Stage
- if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
- echo "stage 4: ASR Training"
- mkdir -p ${exp_dir}/exp/${model_dir}
- current_time=$(date "+%Y-%m-%d_%H-%M")
- log_file="${exp_dir}/exp/${model_dir}/train.log.txt.${current_time}"
- echo "log_file: ${log_file}"
- export CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES
- gpu_num=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
- torchrun \
- --nnodes 1 \
- --nproc_per_node ${gpu_num} \
- ../../../funasr/bin/train.py \
- --config-path "${workspace}/conf" \
- --config-name "${config}" \
- ++train_data_set_list="${feats_dir}/data/${train_set}/audio_datasets.jsonl" \
- ++valid_data_set_list="${feats_dir}/data/${valid_set}/audio_datasets.jsonl" \
- ++tokenizer_conf.token_list="${token_list}" \
- ++frontend_conf.cmvn_file="${feats_dir}/data/${train_set}/am.mvn" \
- ++output_dir="${exp_dir}/exp/${model_dir}" &> ${log_file}
- fi
- # Testing Stage
- if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
- echo "stage 5: Inference"
- if [ ${inference_device} == "cuda" ]; then
- nj=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
- else
- inference_batch_size=1
- CUDA_VISIBLE_DEVICES=""
- for JOB in $(seq ${nj}); do
- CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES"-1,"
- done
- fi
- for dset in ${test_sets}; do
- inference_dir="${exp_dir}/exp/${model_dir}/inference-${inference_checkpoint}/${dset}"
- _logdir="${inference_dir}/logdir"
- echo "inference_dir: ${inference_dir}"
- mkdir -p "${_logdir}"
- data_dir="${feats_dir}/data/${dset}"
- key_file=${data_dir}/${inference_scp}
- split_scps=
- for JOB in $(seq "${nj}"); do
- split_scps+=" ${_logdir}/keys.${JOB}.scp"
- done
- utils/split_scp.pl "${key_file}" ${split_scps}
- gpuid_list_array=(${CUDA_VISIBLE_DEVICES//,/ })
- for JOB in $(seq ${nj}); do
- {
- id=$((JOB-1))
- gpuid=${gpuid_list_array[$id]}
- export CUDA_VISIBLE_DEVICES=${gpuid}
- python ../../../funasr/bin/inference.py \
- --config-path="${exp_dir}/exp/${model_dir}" \
- --config-name="config.yaml" \
- ++init_param="${exp_dir}/exp/${model_dir}/${inference_checkpoint}" \
- ++tokenizer_conf.token_list="${token_list}" \
- ++frontend_conf.cmvn_file="${feats_dir}/data/${train_set}/am.mvn" \
- ++input="${_logdir}/keys.${JOB}.scp" \
- ++output_dir="${inference_dir}/${JOB}" \
- ++device="${inference_device}" \
- ++ncpu=1 \
- ++disable_log=true \
- ++batch_size="${inference_batch_size}" &> ${_logdir}/log.${JOB}.txt
- }&
- done
- wait
- mkdir -p ${inference_dir}/1best_recog
- for f in token score text; do
- if [ -f "${inference_dir}/${JOB}/1best_recog/${f}" ]; then
- for JOB in $(seq "${nj}"); do
- cat "${inference_dir}/${JOB}/1best_recog/${f}"
- done | sort -k1 >"${inference_dir}/1best_recog/${f}"
- fi
- done
- echo "Computing WER ..."
- python utils/postprocess_text_zh.py ${inference_dir}/1best_recog/text ${inference_dir}/1best_recog/text.proc
- python utils/postprocess_text_zh.py ${data_dir}/text ${inference_dir}/1best_recog/text.ref
- python utils/compute_wer.py ${inference_dir}/1best_recog/text.ref ${inference_dir}/1best_recog/text.proc ${inference_dir}/1best_recog/text.cer
- tail -n 3 ${inference_dir}/1best_recog/text.cer
- done
- fi
|