No Description

游雁 865ae89f0a export model 2 years ago
.github 86530b8f6a upload github.io 2 years ago
docs f918af66cf Merge pull request #86 from alibaba-damo-academy/dev 2 years ago
docs_cn df4584ebc6 update github.io 2 years ago
egs 925e8680de add sond model 2 years ago
egs_modelscope 0a7c0661b1 add paraformer-large-contextual egs_modelscope 2 years ago
fun_text_processing 12a7adfdf3 update version 0.1.6 2 years ago
funasr 865ae89f0a export model 2 years ago
.gitignore 454cc544fd update repo 2 years ago
LICENSE c087854f71 create 3 years ago
README.md f918af66cf Merge pull request #86 from alibaba-damo-academy/dev 2 years ago
fbank.py 865ae89f0a export model 2 years ago
setup.py f918af66cf Merge pull request #86 from alibaba-damo-academy/dev 2 years ago

README.md

FunASR: A Fundamental End-to-End Speech Recognition Toolkit

FunASR hopes to build a bridge between academic research and industrial applications on speech recognition. By supporting the training & finetuning of the industrial-grade speech recognition model released on ModelScope, researchers and developers can conduct research and production of speech recognition models more conveniently, and promote the development of speech recognition ecology. ASR for Fun!

News | Highlights | Installation | Docs | Tutorial | Papers | Runtime | Model Zoo | Contact

What's new:

2023.1.16, funasr-0.1.6

  • We release a new version model Paraformer-large-long, which integrate the VAD model, ASR, Punctuation model and timestamp together. The model could take in several hours long inputs.
  • We release a new type model, VAD, which could predict the duration of none-silence speech. It could be freely integrated with any ASR models in Model Zoo.
  • We release a new type model, Punctuation, which could predict the punctuation of ASR models's results. It could be freely integrated with any ASR models in Model Zoo.
  • We release a new model, Data2vec, an unsupervised pretraining model which could be finetuned on ASR and other downstream tasks.
  • We release a new model, Paraformer-Tiny, a lightweight Paraformer model which supports Mandarin command words recognition.
  • We release a new type model, SV, which could extract speaker embeddings and further perform speaker verification on paired utterances. It will be supported for speaker diarization in the future version.
  • We improve the pipeline of modelscope to speedup the inference, by integrating the process of build model into build pipeline.
  • Various new types of audio input types are now supported by modelscope inference pipeline, including wav.scp, wav format, audio bytes, wave samples...

Highlights

  • Many types of typical models are supported, e.g., Tranformer, Conformer, Paraformer.
  • We have released large number of academic and industrial pretrained models on ModelScope
  • The pretrained model Paraformer-large obtains the best performance on many tasks in SpeechIO leaderboard
  • FunASR supplies a easy-to-use pipeline to finetune pretrained models from ModelScope
  • Compared to Espnet framework, the training speed of large-scale datasets in FunASR is much faster owning to the optimized dataloader.

Installation

git clone https://github.com/alibaba/FunASR.git && cd FunASR
pip install --editable ./

For more details, please ref to installation

Usage

For users who are new to FunASR and ModelScope, please refer to FunASR Docs.

Contact

If you have any questions about FunASR, please contact us by

Dingding group Wechat group

Contributors

Acknowledge

  1. We borrowed a lot of code from Kaldi for data preparation.
  2. We borrowed a lot of code from ESPnet. FunASR follows up the training and finetuning pipelines of ESPnet.
  3. We referred Wenet for building dataloader for large scale data training.
  4. We acknowledge DeepScience for contributing the grpc service.

License

This project is licensed under the The MIT License. FunASR also contains various third-party components and some code modified from other repos under other open source licenses.

Citations

@inproceedings{gao2020universal,
  title={Universal ASR: Unifying Streaming and Non-Streaming ASR Using a Single Encoder-Decoder Model},
  author={Gao, Zhifu and Zhang, Shiliang and Lei, Ming and McLoughlin, Ian},
  booktitle={arXiv preprint arXiv:2010.14099},
  year={2020}
}

@inproceedings{gao2022paraformer,
  title={Paraformer: Fast and Accurate Parallel Transformer for Non-autoregressive End-to-End Speech Recognition},
  author={Gao, Zhifu and Zhang, Shiliang and McLoughlin, Ian and Yan, Zhijie},
  booktitle={INTERSPEECH},
  year={2022}
}