| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514 |
- # Copyright (c) Alibaba, Inc. and its affiliates.
- # Part of the implementation is borrowed from espnet/espnet.
- from typing import Tuple
- import copy
- import numpy as np
- import torch
- import torch.nn as nn
- import torchaudio.compliance.kaldi as kaldi
- from torch.nn.utils.rnn import pad_sequence
- import funasr.frontends.eend_ola_feature as eend_ola_feature
- from funasr.register import tables
- def load_cmvn(cmvn_file):
- with open(cmvn_file, 'r', encoding='utf-8') as f:
- lines = f.readlines()
- means_list = []
- vars_list = []
- for i in range(len(lines)):
- line_item = lines[i].split()
- if line_item[0] == '<AddShift>':
- line_item = lines[i + 1].split()
- if line_item[0] == '<LearnRateCoef>':
- add_shift_line = line_item[3:(len(line_item) - 1)]
- means_list = list(add_shift_line)
- continue
- elif line_item[0] == '<Rescale>':
- line_item = lines[i + 1].split()
- if line_item[0] == '<LearnRateCoef>':
- rescale_line = line_item[3:(len(line_item) - 1)]
- vars_list = list(rescale_line)
- continue
- means = np.array(means_list).astype(np.float32)
- vars = np.array(vars_list).astype(np.float32)
- cmvn = np.array([means, vars])
- cmvn = torch.as_tensor(cmvn, dtype=torch.float32)
- return cmvn
- def apply_cmvn(inputs, cmvn): # noqa
- """
- Apply CMVN with mvn data
- """
- device = inputs.device
- dtype = inputs.dtype
- frame, dim = inputs.shape
- means = cmvn[0:1, :dim]
- vars = cmvn[1:2, :dim]
- inputs += means.to(device)
- inputs *= vars.to(device)
- return inputs.type(torch.float32)
- def apply_lfr(inputs, lfr_m, lfr_n):
- LFR_inputs = []
- T = inputs.shape[0]
- T_lfr = int(np.ceil(T / lfr_n))
- left_padding = inputs[0].repeat((lfr_m - 1) // 2, 1)
- inputs = torch.vstack((left_padding, inputs))
- T = T + (lfr_m - 1) // 2
- for i in range(T_lfr):
- if lfr_m <= T - i * lfr_n:
- LFR_inputs.append((inputs[i * lfr_n:i * lfr_n + lfr_m]).view(1, -1))
- else: # process last LFR frame
- num_padding = lfr_m - (T - i * lfr_n)
- frame = (inputs[i * lfr_n:]).view(-1)
- for _ in range(num_padding):
- frame = torch.hstack((frame, inputs[-1]))
- LFR_inputs.append(frame)
- LFR_outputs = torch.vstack(LFR_inputs)
- return LFR_outputs.type(torch.float32)
- @tables.register("frontend_classes", "WavFrontend")
- class WavFrontend(nn.Module):
- """Conventional frontend structure for ASR.
- """
- def __init__(
- self,
- cmvn_file: str = None,
- fs: int = 16000,
- window: str = 'hamming',
- n_mels: int = 80,
- frame_length: int = 25,
- frame_shift: int = 10,
- filter_length_min: int = -1,
- filter_length_max: int = -1,
- lfr_m: int = 1,
- lfr_n: int = 1,
- dither: float = 1.0,
- snip_edges: bool = True,
- upsacle_samples: bool = True,
- **kwargs,
- ):
- super().__init__()
- self.fs = fs
- self.window = window
- self.n_mels = n_mels
- self.frame_length = frame_length
- self.frame_shift = frame_shift
- self.filter_length_min = filter_length_min
- self.filter_length_max = filter_length_max
- self.lfr_m = lfr_m
- self.lfr_n = lfr_n
- self.cmvn_file = cmvn_file
- self.dither = dither
- self.snip_edges = snip_edges
- self.upsacle_samples = upsacle_samples
- self.cmvn = None if self.cmvn_file is None else load_cmvn(self.cmvn_file)
- def output_size(self) -> int:
- return self.n_mels * self.lfr_m
- def forward(
- self,
- input: torch.Tensor,
- input_lengths,
- **kwargs,
- ) -> Tuple[torch.Tensor, torch.Tensor]:
- batch_size = input.size(0)
- feats = []
- feats_lens = []
- for i in range(batch_size):
- waveform_length = input_lengths[i]
- waveform = input[i][:waveform_length]
- if self.upsacle_samples:
- waveform = waveform * (1 << 15)
- waveform = waveform.unsqueeze(0)
- mat = kaldi.fbank(waveform,
- num_mel_bins=self.n_mels,
- frame_length=self.frame_length,
- frame_shift=self.frame_shift,
- dither=self.dither,
- energy_floor=0.0,
- window_type=self.window,
- sample_frequency=self.fs,
- snip_edges=self.snip_edges)
- if self.lfr_m != 1 or self.lfr_n != 1:
- mat = apply_lfr(mat, self.lfr_m, self.lfr_n)
- if self.cmvn is not None:
- mat = apply_cmvn(mat, self.cmvn)
- feat_length = mat.size(0)
- feats.append(mat)
- feats_lens.append(feat_length)
- feats_lens = torch.as_tensor(feats_lens)
- if batch_size == 1:
- feats_pad = feats[0][None, :, :]
- else:
- feats_pad = pad_sequence(feats,
- batch_first=True,
- padding_value=0.0)
- return feats_pad, feats_lens
- def forward_fbank(
- self,
- input: torch.Tensor,
- input_lengths: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
- batch_size = input.size(0)
- feats = []
- feats_lens = []
- for i in range(batch_size):
- waveform_length = input_lengths[i]
- waveform = input[i][:waveform_length]
- waveform = waveform * (1 << 15)
- waveform = waveform.unsqueeze(0)
- mat = kaldi.fbank(waveform,
- num_mel_bins=self.n_mels,
- frame_length=self.frame_length,
- frame_shift=self.frame_shift,
- dither=self.dither,
- energy_floor=0.0,
- window_type=self.window,
- sample_frequency=self.fs)
- feat_length = mat.size(0)
- feats.append(mat)
- feats_lens.append(feat_length)
- feats_lens = torch.as_tensor(feats_lens)
- feats_pad = pad_sequence(feats,
- batch_first=True,
- padding_value=0.0)
- return feats_pad, feats_lens
- def forward_lfr_cmvn(
- self,
- input: torch.Tensor,
- input_lengths: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
- batch_size = input.size(0)
- feats = []
- feats_lens = []
- for i in range(batch_size):
- mat = input[i, :input_lengths[i], :]
- if self.lfr_m != 1 or self.lfr_n != 1:
- mat = apply_lfr(mat, self.lfr_m, self.lfr_n)
- if self.cmvn is not None:
- mat = apply_cmvn(mat, self.cmvn)
- feat_length = mat.size(0)
- feats.append(mat)
- feats_lens.append(feat_length)
- feats_lens = torch.as_tensor(feats_lens)
- feats_pad = pad_sequence(feats,
- batch_first=True,
- padding_value=0.0)
- return feats_pad, feats_lens
- @tables.register("frontend_classes", "WavFrontendOnline")
- class WavFrontendOnline(nn.Module):
- """Conventional frontend structure for streaming ASR/VAD.
- """
- def __init__(
- self,
- cmvn_file: str = None,
- fs: int = 16000,
- window: str = 'hamming',
- n_mels: int = 80,
- frame_length: int = 25,
- frame_shift: int = 10,
- filter_length_min: int = -1,
- filter_length_max: int = -1,
- lfr_m: int = 1,
- lfr_n: int = 1,
- dither: float = 1.0,
- snip_edges: bool = True,
- upsacle_samples: bool = True,
- **kwargs,
- ):
- super().__init__()
- self.fs = fs
- self.window = window
- self.n_mels = n_mels
- self.frame_length = frame_length
- self.frame_shift = frame_shift
- self.frame_sample_length = int(self.frame_length * self.fs / 1000)
- self.frame_shift_sample_length = int(self.frame_shift * self.fs / 1000)
- self.filter_length_min = filter_length_min
- self.filter_length_max = filter_length_max
- self.lfr_m = lfr_m
- self.lfr_n = lfr_n
- self.cmvn_file = cmvn_file
- self.dither = dither
- self.snip_edges = snip_edges
- self.upsacle_samples = upsacle_samples
- # self.waveforms = None
- # self.reserve_waveforms = None
- # self.fbanks = None
- # self.fbanks_lens = None
- self.cmvn = None if self.cmvn_file is None else load_cmvn(self.cmvn_file)
- # self.input_cache = None
- # self.lfr_splice_cache = []
- def output_size(self) -> int:
- return self.n_mels * self.lfr_m
- @staticmethod
- def apply_cmvn(inputs: torch.Tensor, cmvn: torch.Tensor) -> torch.Tensor:
- """
- Apply CMVN with mvn data
- """
- device = inputs.device
- dtype = inputs.dtype
- frame, dim = inputs.shape
- means = np.tile(cmvn[0:1, :dim], (frame, 1))
- vars = np.tile(cmvn[1:2, :dim], (frame, 1))
- inputs += torch.from_numpy(means).type(dtype).to(device)
- inputs *= torch.from_numpy(vars).type(dtype).to(device)
- return inputs.type(torch.float32)
- @staticmethod
- def apply_lfr(inputs: torch.Tensor, lfr_m: int, lfr_n: int, is_final: bool = False) -> Tuple[
- torch.Tensor, torch.Tensor, int]:
- """
- Apply lfr with data
- """
- LFR_inputs = []
- # inputs = torch.vstack((inputs_lfr_cache, inputs))
- T = inputs.shape[0] # include the right context
- T_lfr = int(np.ceil((T - (lfr_m - 1) // 2) / lfr_n)) # minus the right context: (lfr_m - 1) // 2
- splice_idx = T_lfr
- for i in range(T_lfr):
- if lfr_m <= T - i * lfr_n:
- LFR_inputs.append((inputs[i * lfr_n:i * lfr_n + lfr_m]).view(1, -1))
- else: # process last LFR frame
- if is_final:
- num_padding = lfr_m - (T - i * lfr_n)
- frame = (inputs[i * lfr_n:]).view(-1)
- for _ in range(num_padding):
- frame = torch.hstack((frame, inputs[-1]))
- LFR_inputs.append(frame)
- else:
- # update splice_idx and break the circle
- splice_idx = i
- break
- splice_idx = min(T - 1, splice_idx * lfr_n)
- lfr_splice_cache = inputs[splice_idx:, :]
- LFR_outputs = torch.vstack(LFR_inputs)
- return LFR_outputs.type(torch.float32), lfr_splice_cache, splice_idx
- @staticmethod
- def compute_frame_num(sample_length: int, frame_sample_length: int, frame_shift_sample_length: int) -> int:
- frame_num = int((sample_length - frame_sample_length) / frame_shift_sample_length + 1)
- return frame_num if frame_num >= 1 and sample_length >= frame_sample_length else 0
- def forward_fbank(
- self,
- input: torch.Tensor,
- input_lengths: torch.Tensor,
- cache: dict = {},
- **kwargs,
- ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
- batch_size = input.size(0)
- input = torch.cat((cache["input_cache"], input), dim=1)
- frame_num = self.compute_frame_num(input.shape[-1], self.frame_sample_length, self.frame_shift_sample_length)
- # update self.in_cache
- cache["input_cache"] = input[:, -(input.shape[-1] - frame_num * self.frame_shift_sample_length):]
- waveforms = torch.empty(0)
- feats_pad = torch.empty(0)
- feats_lens = torch.empty(0)
- if frame_num:
- waveforms = []
- feats = []
- feats_lens = []
- for i in range(batch_size):
- waveform = input[i]
- # we need accurate wave samples that used for fbank extracting
- waveforms.append(
- waveform[:((frame_num - 1) * self.frame_shift_sample_length + self.frame_sample_length)])
- waveform = waveform * (1 << 15)
- waveform = waveform.unsqueeze(0)
- mat = kaldi.fbank(waveform,
- num_mel_bins=self.n_mels,
- frame_length=self.frame_length,
- frame_shift=self.frame_shift,
- dither=self.dither,
- energy_floor=0.0,
- window_type=self.window,
- sample_frequency=self.fs)
- feat_length = mat.size(0)
- feats.append(mat)
- feats_lens.append(feat_length)
- waveforms = torch.stack(waveforms)
- feats_lens = torch.as_tensor(feats_lens)
- feats_pad = pad_sequence(feats,
- batch_first=True,
- padding_value=0.0)
- cache["fbanks"] = feats_pad
- cache["fbanks_lens"]= copy.deepcopy(feats_lens)
- return waveforms, feats_pad, feats_lens
- def forward_lfr_cmvn(
- self,
- input: torch.Tensor,
- input_lengths: torch.Tensor,
- is_final: bool = False,
- cache: dict = {},
- **kwargs,
- ):
- batch_size = input.size(0)
- feats = []
- feats_lens = []
- lfr_splice_frame_idxs = []
- for i in range(batch_size):
- mat = input[i, :input_lengths[i], :]
- if self.lfr_m != 1 or self.lfr_n != 1:
- # update self.lfr_splice_cache in self.apply_lfr
- # mat, self.lfr_splice_cache[i], lfr_splice_frame_idx = self.apply_lfr(mat, self.lfr_m, self.lfr_n, self.lfr_splice_cache[i],
- mat, cache["lfr_splice_cache"][i], lfr_splice_frame_idx = self.apply_lfr(mat, self.lfr_m, self.lfr_n,
- is_final)
- if self.cmvn_file is not None:
- mat = self.apply_cmvn(mat, self.cmvn)
- feat_length = mat.size(0)
- feats.append(mat)
- feats_lens.append(feat_length)
- lfr_splice_frame_idxs.append(lfr_splice_frame_idx)
- feats_lens = torch.as_tensor(feats_lens)
- feats_pad = pad_sequence(feats,
- batch_first=True,
- padding_value=0.0)
- lfr_splice_frame_idxs = torch.as_tensor(lfr_splice_frame_idxs)
- return feats_pad, feats_lens, lfr_splice_frame_idxs
- def forward(
- self, input: torch.Tensor, input_lengths: torch.Tensor, **kwargs
- ):
- is_final = kwargs.get("is_final", False)
- cache = kwargs.get("cache", {})
- if len(cache) == 0:
- self.init_cache(cache)
-
- batch_size = input.shape[0]
- assert batch_size == 1, 'we support to extract feature online only when the batch size is equal to 1 now'
-
- waveforms, feats, feats_lengths = self.forward_fbank(input, input_lengths, cache=cache) # input shape: B T D
-
- if feats.shape[0]:
- cache["waveforms"] = torch.cat((cache["reserve_waveforms"], waveforms), dim=1)
-
- if not cache["lfr_splice_cache"]: # 初始化splice_cache
- for i in range(batch_size):
- cache["lfr_splice_cache"].append(feats[i][0, :].unsqueeze(dim=0).repeat((self.lfr_m - 1) // 2, 1))
- # need the number of the input frames + self.lfr_splice_cache[0].shape[0] is greater than self.lfr_m
- if feats_lengths[0] + cache["lfr_splice_cache"][0].shape[0] >= self.lfr_m:
- lfr_splice_cache_tensor = torch.stack(cache["lfr_splice_cache"]) # B T D
- feats = torch.cat((lfr_splice_cache_tensor, feats), dim=1)
- feats_lengths += lfr_splice_cache_tensor[0].shape[0]
- frame_from_waveforms = int(
- (cache["waveforms"].shape[1] - self.frame_sample_length) / self.frame_shift_sample_length + 1)
- minus_frame = (self.lfr_m - 1) // 2 if cache["reserve_waveforms"].numel() == 0 else 0
- feats, feats_lengths, lfr_splice_frame_idxs = self.forward_lfr_cmvn(feats, feats_lengths, is_final, cache=cache)
- if self.lfr_m == 1:
- cache["reserve_waveforms"] = torch.empty(0)
- else:
- reserve_frame_idx = lfr_splice_frame_idxs[0] - minus_frame
- # print('reserve_frame_idx: ' + str(reserve_frame_idx))
- # print('frame_frame: ' + str(frame_from_waveforms))
- cache["reserve_waveforms"] = cache["waveforms"][:, reserve_frame_idx * self.frame_shift_sample_length:frame_from_waveforms * self.frame_shift_sample_length]
- sample_length = (frame_from_waveforms - 1) * self.frame_shift_sample_length + self.frame_sample_length
- cache["waveforms"] = cache["waveforms"][:, :sample_length]
- else:
- # update self.reserve_waveforms and self.lfr_splice_cache
- cache["reserve_waveforms"] = cache["waveforms"][:, :-(self.frame_sample_length - self.frame_shift_sample_length)]
- for i in range(batch_size):
- cache["lfr_splice_cache"][i] = torch.cat((cache["lfr_splice_cache"][i], feats[i]), dim=0)
- return torch.empty(0), feats_lengths
- else:
- if is_final:
- cache["waveforms"] = waveforms if cache["reserve_waveforms"].numel() == 0 else cache["reserve_waveforms"]
- feats = torch.stack(cache["lfr_splice_cache"])
- feats_lengths = torch.zeros(batch_size, dtype=torch.int) + feats.shape[1]
- feats, feats_lengths, _ = self.forward_lfr_cmvn(feats, feats_lengths, is_final, cache=cache)
- # if is_final:
- # self.init_cache(cache)
- return feats, feats_lengths
- def init_cache(self, cache: dict = {}):
- cache["reserve_waveforms"] = torch.empty(0)
- cache["input_cache"] = torch.empty(0)
- cache["lfr_splice_cache"] = []
- cache["waveforms"] = None
- cache["fbanks"] = None
- cache["fbanks_lens"] = None
- return cache
- class WavFrontendMel23(nn.Module):
- """Conventional frontend structure for ASR.
- """
- def __init__(
- self,
- fs: int = 16000,
- frame_length: int = 25,
- frame_shift: int = 10,
- lfr_m: int = 1,
- lfr_n: int = 1,
- **kwargs,
- ):
- super().__init__()
- self.fs = fs
- self.frame_length = frame_length
- self.frame_shift = frame_shift
- self.lfr_m = lfr_m
- self.lfr_n = lfr_n
- self.n_mels = 23
- def output_size(self) -> int:
- return self.n_mels * (2 * self.lfr_m + 1)
- def forward(
- self,
- input: torch.Tensor,
- input_lengths: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
- batch_size = input.size(0)
- feats = []
- feats_lens = []
- for i in range(batch_size):
- waveform_length = input_lengths[i]
- waveform = input[i][:waveform_length]
- waveform = waveform.numpy()
- mat = eend_ola_feature.stft(waveform, self.frame_length, self.frame_shift)
- mat = eend_ola_feature.transform(mat)
- mat = eend_ola_feature.splice(mat, context_size=self.lfr_m)
- mat = mat[::self.lfr_n]
- mat = torch.from_numpy(mat)
- feat_length = mat.size(0)
- feats.append(mat)
- feats_lens.append(feat_length)
- feats_lens = torch.as_tensor(feats_lens)
- feats_pad = pad_sequence(feats,
- batch_first=True,
- padding_value=0.0)
- return feats_pad, feats_lens
|