| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338 |
- #!/usr/bin/env python3
- # -*- encoding: utf-8 -*-
- # Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
- # MIT License (https://opensource.org/licenses/MIT)
- import torch
- from funasr.register import tables
- from funasr.models.transformer.utils.nets_utils import make_pad_mask
- class mae_loss(torch.nn.Module):
- def __init__(self, normalize_length=False):
- super(mae_loss, self).__init__()
- self.normalize_length = normalize_length
- self.criterion = torch.nn.L1Loss(reduction='sum')
- def forward(self, token_length, pre_token_length):
- loss_token_normalizer = token_length.size(0)
- if self.normalize_length:
- loss_token_normalizer = token_length.sum().type(torch.float32)
- loss = self.criterion(token_length, pre_token_length)
- loss = loss / loss_token_normalizer
- return loss
- def cif(hidden, alphas, threshold):
- batch_size, len_time, hidden_size = hidden.size()
- # loop varss
- integrate = torch.zeros([batch_size], device=hidden.device)
- frame = torch.zeros([batch_size, hidden_size], device=hidden.device)
- # intermediate vars along time
- list_fires = []
- list_frames = []
- for t in range(len_time):
- alpha = alphas[:, t]
- distribution_completion = torch.ones([batch_size], device=hidden.device) - integrate
- integrate += alpha
- list_fires.append(integrate)
- fire_place = integrate >= threshold
- integrate = torch.where(fire_place,
- integrate - torch.ones([batch_size], device=hidden.device),
- integrate)
- cur = torch.where(fire_place,
- distribution_completion,
- alpha)
- remainds = alpha - cur
- frame += cur[:, None] * hidden[:, t, :]
- list_frames.append(frame)
- frame = torch.where(fire_place[:, None].repeat(1, hidden_size),
- remainds[:, None] * hidden[:, t, :],
- frame)
- fires = torch.stack(list_fires, 1)
- frames = torch.stack(list_frames, 1)
- list_ls = []
- len_labels = torch.round(alphas.sum(-1)).int()
- max_label_len = len_labels.max()
- for b in range(batch_size):
- fire = fires[b, :]
- l = torch.index_select(frames[b, :, :], 0, torch.nonzero(fire >= threshold).squeeze())
- pad_l = torch.zeros([max_label_len - l.size(0), hidden_size], device=hidden.device)
- list_ls.append(torch.cat([l, pad_l], 0))
- return torch.stack(list_ls, 0), fires
- def cif_wo_hidden(alphas, threshold):
- batch_size, len_time = alphas.size()
- # loop varss
- integrate = torch.zeros([batch_size], device=alphas.device)
- # intermediate vars along time
- list_fires = []
- for t in range(len_time):
- alpha = alphas[:, t]
- integrate += alpha
- list_fires.append(integrate)
- fire_place = integrate >= threshold
- integrate = torch.where(fire_place,
- integrate - torch.ones([batch_size], device=alphas.device)*threshold,
- integrate)
- fires = torch.stack(list_fires, 1)
- return fires
- @tables.register("predictor_classes", "CifPredictorV3")
- class CifPredictorV3(torch.nn.Module):
- def __init__(self,
- idim,
- l_order,
- r_order,
- threshold=1.0,
- dropout=0.1,
- smooth_factor=1.0,
- noise_threshold=0,
- tail_threshold=0.0,
- tf2torch_tensor_name_prefix_torch="predictor",
- tf2torch_tensor_name_prefix_tf="seq2seq/cif",
- smooth_factor2=1.0,
- noise_threshold2=0,
- upsample_times=5,
- upsample_type="cnn",
- use_cif1_cnn=True,
- tail_mask=True,
- ):
- super(CifPredictorV3, self).__init__()
- self.pad = torch.nn.ConstantPad1d((l_order, r_order), 0)
- self.cif_conv1d = torch.nn.Conv1d(idim, idim, l_order + r_order + 1)
- self.cif_output = torch.nn.Linear(idim, 1)
- self.dropout = torch.nn.Dropout(p=dropout)
- self.threshold = threshold
- self.smooth_factor = smooth_factor
- self.noise_threshold = noise_threshold
- self.tail_threshold = tail_threshold
- self.tf2torch_tensor_name_prefix_torch = tf2torch_tensor_name_prefix_torch
- self.tf2torch_tensor_name_prefix_tf = tf2torch_tensor_name_prefix_tf
- self.upsample_times = upsample_times
- self.upsample_type = upsample_type
- self.use_cif1_cnn = use_cif1_cnn
- if self.upsample_type == 'cnn':
- self.upsample_cnn = torch.nn.ConvTranspose1d(idim, idim, self.upsample_times, self.upsample_times)
- self.cif_output2 = torch.nn.Linear(idim, 1)
- elif self.upsample_type == 'cnn_blstm':
- self.upsample_cnn = torch.nn.ConvTranspose1d(idim, idim, self.upsample_times, self.upsample_times)
- self.blstm = torch.nn.LSTM(idim, idim, 1, bias=True, batch_first=True, dropout=0.0, bidirectional=True)
- self.cif_output2 = torch.nn.Linear(idim*2, 1)
- elif self.upsample_type == 'cnn_attn':
- self.upsample_cnn = torch.nn.ConvTranspose1d(idim, idim, self.upsample_times, self.upsample_times)
- from funasr.models.transformer.encoder import EncoderLayer as TransformerEncoderLayer
- from funasr.models.transformer.attention import MultiHeadedAttention
- from funasr.models.transformer.positionwise_feed_forward import PositionwiseFeedForward
- positionwise_layer_args = (
- idim,
- idim*2,
- 0.1,
- )
- self.self_attn = TransformerEncoderLayer(
- idim,
- MultiHeadedAttention(
- 4, idim, 0.1
- ),
- PositionwiseFeedForward(*positionwise_layer_args),
- 0.1,
- True, #normalize_before,
- False, #concat_after,
- )
- self.cif_output2 = torch.nn.Linear(idim, 1)
- self.smooth_factor2 = smooth_factor2
- self.noise_threshold2 = noise_threshold2
- def forward(self, hidden, target_label=None, mask=None, ignore_id=-1, mask_chunk_predictor=None,
- target_label_length=None):
- h = hidden
- context = h.transpose(1, 2)
- queries = self.pad(context)
- output = torch.relu(self.cif_conv1d(queries))
- # alphas2 is an extra head for timestamp prediction
- if not self.use_cif1_cnn:
- _output = context
- else:
- _output = output
- if self.upsample_type == 'cnn':
- output2 = self.upsample_cnn(_output)
- output2 = output2.transpose(1,2)
- elif self.upsample_type == 'cnn_blstm':
- output2 = self.upsample_cnn(_output)
- output2 = output2.transpose(1,2)
- output2, (_, _) = self.blstm(output2)
- elif self.upsample_type == 'cnn_attn':
- output2 = self.upsample_cnn(_output)
- output2 = output2.transpose(1,2)
- output2, _ = self.self_attn(output2, mask)
- # import pdb; pdb.set_trace()
- alphas2 = torch.sigmoid(self.cif_output2(output2))
- alphas2 = torch.nn.functional.relu(alphas2 * self.smooth_factor2 - self.noise_threshold2)
- # repeat the mask in T demension to match the upsampled length
- if mask is not None:
- mask2 = mask.repeat(1, self.upsample_times, 1).transpose(-1, -2).reshape(alphas2.shape[0], -1)
- mask2 = mask2.unsqueeze(-1)
- alphas2 = alphas2 * mask2
- alphas2 = alphas2.squeeze(-1)
- token_num2 = alphas2.sum(-1)
- output = output.transpose(1, 2)
- output = self.cif_output(output)
- alphas = torch.sigmoid(output)
- alphas = torch.nn.functional.relu(alphas * self.smooth_factor - self.noise_threshold)
- if mask is not None:
- mask = mask.transpose(-1, -2).float()
- alphas = alphas * mask
- if mask_chunk_predictor is not None:
- alphas = alphas * mask_chunk_predictor
- alphas = alphas.squeeze(-1)
- mask = mask.squeeze(-1)
- if target_label_length is not None:
- target_length = target_label_length
- elif target_label is not None:
- target_length = (target_label != ignore_id).float().sum(-1)
- else:
- target_length = None
- token_num = alphas.sum(-1)
- if target_length is not None:
- alphas *= (target_length / token_num)[:, None].repeat(1, alphas.size(1))
- elif self.tail_threshold > 0.0:
- hidden, alphas, token_num = self.tail_process_fn(hidden, alphas, token_num, mask=mask)
- acoustic_embeds, cif_peak = cif(hidden, alphas, self.threshold)
- if target_length is None and self.tail_threshold > 0.0:
- token_num_int = torch.max(token_num).type(torch.int32).item()
- acoustic_embeds = acoustic_embeds[:, :token_num_int, :]
- return acoustic_embeds, token_num, alphas, cif_peak, token_num2
- def get_upsample_timestamp(self, hidden, mask=None, token_num=None):
- h = hidden
- b = hidden.shape[0]
- context = h.transpose(1, 2)
- queries = self.pad(context)
- output = torch.relu(self.cif_conv1d(queries))
- # alphas2 is an extra head for timestamp prediction
- if not self.use_cif1_cnn:
- _output = context
- else:
- _output = output
- if self.upsample_type == 'cnn':
- output2 = self.upsample_cnn(_output)
- output2 = output2.transpose(1,2)
- elif self.upsample_type == 'cnn_blstm':
- output2 = self.upsample_cnn(_output)
- output2 = output2.transpose(1,2)
- output2, (_, _) = self.blstm(output2)
- elif self.upsample_type == 'cnn_attn':
- output2 = self.upsample_cnn(_output)
- output2 = output2.transpose(1,2)
- output2, _ = self.self_attn(output2, mask)
- alphas2 = torch.sigmoid(self.cif_output2(output2))
- alphas2 = torch.nn.functional.relu(alphas2 * self.smooth_factor2 - self.noise_threshold2)
- # repeat the mask in T demension to match the upsampled length
- if mask is not None:
- mask2 = mask.repeat(1, self.upsample_times, 1).transpose(-1, -2).reshape(alphas2.shape[0], -1)
- mask2 = mask2.unsqueeze(-1)
- alphas2 = alphas2 * mask2
- alphas2 = alphas2.squeeze(-1)
- _token_num = alphas2.sum(-1)
- if token_num is not None:
- alphas2 *= (token_num / _token_num)[:, None].repeat(1, alphas2.size(1))
- # re-downsample
- ds_alphas = alphas2.reshape(b, -1, self.upsample_times).sum(-1)
- ds_cif_peak = cif_wo_hidden(ds_alphas, self.threshold - 1e-4)
- # upsampled alphas and cif_peak
- us_alphas = alphas2
- us_cif_peak = cif_wo_hidden(us_alphas, self.threshold - 1e-4)
- return ds_alphas, ds_cif_peak, us_alphas, us_cif_peak
- def tail_process_fn(self, hidden, alphas, token_num=None, mask=None):
- b, t, d = hidden.size()
- tail_threshold = self.tail_threshold
- if mask is not None:
- zeros_t = torch.zeros((b, 1), dtype=torch.float32, device=alphas.device)
- ones_t = torch.ones_like(zeros_t)
- mask_1 = torch.cat([mask, zeros_t], dim=1)
- mask_2 = torch.cat([ones_t, mask], dim=1)
- mask = mask_2 - mask_1
- tail_threshold = mask * tail_threshold
- alphas = torch.cat([alphas, zeros_t], dim=1)
- alphas = torch.add(alphas, tail_threshold)
- else:
- tail_threshold = torch.tensor([tail_threshold], dtype=alphas.dtype).to(alphas.device)
- tail_threshold = torch.reshape(tail_threshold, (1, 1))
- alphas = torch.cat([alphas, tail_threshold], dim=1)
- zeros = torch.zeros((b, 1, d), dtype=hidden.dtype).to(hidden.device)
- hidden = torch.cat([hidden, zeros], dim=1)
- token_num = alphas.sum(dim=-1)
- token_num_floor = torch.floor(token_num)
- return hidden, alphas, token_num_floor
- def gen_frame_alignments(self,
- alphas: torch.Tensor = None,
- encoder_sequence_length: torch.Tensor = None):
- batch_size, maximum_length = alphas.size()
- int_type = torch.int32
- is_training = self.training
- if is_training:
- token_num = torch.round(torch.sum(alphas, dim=1)).type(int_type)
- else:
- token_num = torch.floor(torch.sum(alphas, dim=1)).type(int_type)
- max_token_num = torch.max(token_num).item()
- alphas_cumsum = torch.cumsum(alphas, dim=1)
- alphas_cumsum = torch.floor(alphas_cumsum).type(int_type)
- alphas_cumsum = alphas_cumsum[:, None, :].repeat(1, max_token_num, 1)
- index = torch.ones([batch_size, max_token_num], dtype=int_type)
- index = torch.cumsum(index, dim=1)
- index = index[:, :, None].repeat(1, 1, maximum_length).to(alphas_cumsum.device)
- index_div = torch.floor(torch.true_divide(alphas_cumsum, index)).type(int_type)
- index_div_bool_zeros = index_div.eq(0)
- index_div_bool_zeros_count = torch.sum(index_div_bool_zeros, dim=-1) + 1
- index_div_bool_zeros_count = torch.clamp(index_div_bool_zeros_count, 0, encoder_sequence_length.max())
- token_num_mask = (~make_pad_mask(token_num, maxlen=max_token_num)).to(token_num.device)
- index_div_bool_zeros_count *= token_num_mask
- index_div_bool_zeros_count_tile = index_div_bool_zeros_count[:, :, None].repeat(1, 1, maximum_length)
- ones = torch.ones_like(index_div_bool_zeros_count_tile)
- zeros = torch.zeros_like(index_div_bool_zeros_count_tile)
- ones = torch.cumsum(ones, dim=2)
- cond = index_div_bool_zeros_count_tile == ones
- index_div_bool_zeros_count_tile = torch.where(cond, zeros, ones)
- index_div_bool_zeros_count_tile_bool = index_div_bool_zeros_count_tile.type(torch.bool)
- index_div_bool_zeros_count_tile = 1 - index_div_bool_zeros_count_tile_bool.type(int_type)
- index_div_bool_zeros_count_tile_out = torch.sum(index_div_bool_zeros_count_tile, dim=1)
- index_div_bool_zeros_count_tile_out = index_div_bool_zeros_count_tile_out.type(int_type)
- predictor_mask = (~make_pad_mask(encoder_sequence_length, maxlen=encoder_sequence_length.max())).type(
- int_type).to(encoder_sequence_length.device)
- index_div_bool_zeros_count_tile_out = index_div_bool_zeros_count_tile_out * predictor_mask
- predictor_alignments = index_div_bool_zeros_count_tile_out
- predictor_alignments_length = predictor_alignments.sum(-1).type(encoder_sequence_length.dtype)
- return predictor_alignments.detach(), predictor_alignments_length.detach()
|