| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344 |
- #!/usr/bin/env python3
- # -*- encoding: utf-8 -*-
- # Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
- # MIT License (https://opensource.org/licenses/MIT)
- import copy
- import time
- import torch
- import logging
- from contextlib import contextmanager
- from distutils.version import LooseVersion
- from typing import Dict, List, Optional, Tuple
- from funasr.register import tables
- from funasr.models.ctc.ctc import CTC
- from funasr.utils import postprocess_utils
- from funasr.metrics.compute_acc import th_accuracy
- from funasr.utils.datadir_writer import DatadirWriter
- from funasr.models.paraformer.model import Paraformer
- from funasr.models.paraformer.search import Hypothesis
- from funasr.train_utils.device_funcs import force_gatherable
- from funasr.models.transformer.utils.add_sos_eos import add_sos_eos
- from funasr.utils.timestamp_tools import ts_prediction_lfr6_standard
- from funasr.models.transformer.utils.nets_utils import make_pad_mask, pad_list
- from funasr.utils.load_utils import load_audio_text_image_video, extract_fbank
- if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"):
- from torch.cuda.amp import autocast
- else:
- # Nothing to do if torch<1.6.0
- @contextmanager
- def autocast(enabled=True):
- yield
- @tables.register("model_classes", "BiCifParaformer")
- class BiCifParaformer(Paraformer):
- """
- Author: Speech Lab of DAMO Academy, Alibaba Group
- Paper1: FunASR: A Fundamental End-to-End Speech Recognition Toolkit
- https://arxiv.org/abs/2305.11013
- Paper2: Achieving timestamp prediction while recognizing with non-autoregressive end-to-end ASR model
- https://arxiv.org/abs/2301.12343
- """
-
- def __init__(
- self,
- *args,
- **kwargs,
- ):
- super().__init__(*args, **kwargs)
- def _calc_pre2_loss(
- self,
- encoder_out: torch.Tensor,
- encoder_out_lens: torch.Tensor,
- ys_pad: torch.Tensor,
- ys_pad_lens: torch.Tensor,
- ):
- encoder_out_mask = (~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]).to(
- encoder_out.device)
- if self.predictor_bias == 1:
- _, ys_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id)
- ys_pad_lens = ys_pad_lens + self.predictor_bias
- _, _, _, _, pre_token_length2 = self.predictor(encoder_out, ys_pad, encoder_out_mask, ignore_id=self.ignore_id)
-
- # loss_pre = self.criterion_pre(ys_pad_lens.type_as(pre_token_length), pre_token_length)
- loss_pre2 = self.criterion_pre(ys_pad_lens.type_as(pre_token_length2), pre_token_length2)
-
- return loss_pre2
-
-
- def _calc_att_loss(
- self,
- encoder_out: torch.Tensor,
- encoder_out_lens: torch.Tensor,
- ys_pad: torch.Tensor,
- ys_pad_lens: torch.Tensor,
- ):
- encoder_out_mask = (~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]).to(
- encoder_out.device)
- if self.predictor_bias == 1:
- _, ys_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id)
- ys_pad_lens = ys_pad_lens + self.predictor_bias
- pre_acoustic_embeds, pre_token_length, _, pre_peak_index, _ = self.predictor(encoder_out, ys_pad,
- encoder_out_mask,
- ignore_id=self.ignore_id)
-
- # 0. sampler
- decoder_out_1st = None
- if self.sampling_ratio > 0.0:
- sematic_embeds, decoder_out_1st = self.sampler(encoder_out, encoder_out_lens, ys_pad, ys_pad_lens,
- pre_acoustic_embeds)
- else:
- sematic_embeds = pre_acoustic_embeds
-
- # 1. Forward decoder
- decoder_outs = self.decoder(
- encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens
- )
- decoder_out, _ = decoder_outs[0], decoder_outs[1]
-
- if decoder_out_1st is None:
- decoder_out_1st = decoder_out
- # 2. Compute attention loss
- loss_att = self.criterion_att(decoder_out, ys_pad)
- acc_att = th_accuracy(
- decoder_out_1st.view(-1, self.vocab_size),
- ys_pad,
- ignore_label=self.ignore_id,
- )
- loss_pre = self.criterion_pre(ys_pad_lens.type_as(pre_token_length), pre_token_length)
-
- # Compute cer/wer using attention-decoder
- if self.training or self.error_calculator is None:
- cer_att, wer_att = None, None
- else:
- ys_hat = decoder_out_1st.argmax(dim=-1)
- cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu())
-
- return loss_att, acc_att, cer_att, wer_att, loss_pre
- def calc_predictor(self, encoder_out, encoder_out_lens):
- encoder_out_mask = (~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]).to(
- encoder_out.device)
- pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index, pre_token_length2 = self.predictor(encoder_out,
- None,
- encoder_out_mask,
- ignore_id=self.ignore_id)
- return pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index
- def calc_predictor_timestamp(self, encoder_out, encoder_out_lens, token_num):
- encoder_out_mask = (~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]).to(
- encoder_out.device)
- ds_alphas, ds_cif_peak, us_alphas, us_peaks = self.predictor.get_upsample_timestamp(encoder_out,
- encoder_out_mask,
- token_num)
- return ds_alphas, ds_cif_peak, us_alphas, us_peaks
-
-
- def forward(
- self,
- speech: torch.Tensor,
- speech_lengths: torch.Tensor,
- text: torch.Tensor,
- text_lengths: torch.Tensor,
- **kwargs,
- ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
- """Frontend + Encoder + Decoder + Calc loss
- Args:
- speech: (Batch, Length, ...)
- speech_lengths: (Batch, )
- text: (Batch, Length)
- text_lengths: (Batch,)
- """
- if len(text_lengths.size()) > 1:
- text_lengths = text_lengths[:, 0]
- if len(speech_lengths.size()) > 1:
- speech_lengths = speech_lengths[:, 0]
-
- batch_size = speech.shape[0]
-
- # Encoder
- encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
- loss_ctc, cer_ctc = None, None
- loss_pre = None
- stats = dict()
-
- # decoder: CTC branch
- if self.ctc_weight != 0.0:
- loss_ctc, cer_ctc = self._calc_ctc_loss(
- encoder_out, encoder_out_lens, text, text_lengths
- )
-
- # Collect CTC branch stats
- stats["loss_ctc"] = loss_ctc.detach() if loss_ctc is not None else None
- stats["cer_ctc"] = cer_ctc
- # decoder: Attention decoder branch
- loss_att, acc_att, cer_att, wer_att, loss_pre = self._calc_att_loss(
- encoder_out, encoder_out_lens, text, text_lengths
- )
-
- loss_pre2 = self._calc_pre2_loss(
- encoder_out, encoder_out_lens, text, text_lengths
- )
-
- # 3. CTC-Att loss definition
- if self.ctc_weight == 0.0:
- loss = loss_att + loss_pre * self.predictor_weight + loss_pre2 * self.predictor_weight * 0.5
- else:
- loss = self.ctc_weight * loss_ctc + (
- 1 - self.ctc_weight) * loss_att + loss_pre * self.predictor_weight + loss_pre2 * self.predictor_weight * 0.5
-
- # Collect Attn branch stats
- stats["loss_att"] = loss_att.detach() if loss_att is not None else None
- stats["acc"] = acc_att
- stats["cer"] = cer_att
- stats["wer"] = wer_att
- stats["loss_pre"] = loss_pre.detach().cpu() if loss_pre is not None else None
- stats["loss_pre2"] = loss_pre2.detach().cpu()
-
- stats["loss"] = torch.clone(loss.detach())
-
- # force_gatherable: to-device and to-tensor if scalar for DataParallel
- if self.length_normalized_loss:
- batch_size = int((text_lengths + self.predictor_bias).sum())
-
- loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
- return loss, stats, weight
- def inference(self,
- data_in,
- data_lengths=None,
- key: list = None,
- tokenizer=None,
- frontend=None,
- **kwargs,
- ):
-
- # init beamsearch
- is_use_ctc = kwargs.get("decoding_ctc_weight", 0.0) > 0.00001 and self.ctc != None
- is_use_lm = kwargs.get("lm_weight", 0.0) > 0.00001 and kwargs.get("lm_file", None) is not None
- if self.beam_search is None and (is_use_lm or is_use_ctc):
- logging.info("enable beam_search")
- self.init_beam_search(**kwargs)
- self.nbest = kwargs.get("nbest", 1)
-
- meta_data = {}
- # if isinstance(data_in, torch.Tensor): # fbank
- # speech, speech_lengths = data_in, data_lengths
- # if len(speech.shape) < 3:
- # speech = speech[None, :, :]
- # if speech_lengths is None:
- # speech_lengths = speech.shape[1]
- # else:
- # extract fbank feats
- time1 = time.perf_counter()
- audio_sample_list = load_audio_text_image_video(data_in, fs=frontend.fs, audio_fs=kwargs.get("fs", 16000))
- time2 = time.perf_counter()
- meta_data["load_data"] = f"{time2 - time1:0.3f}"
- speech, speech_lengths = extract_fbank(audio_sample_list, data_type=kwargs.get("data_type", "sound"),
- frontend=frontend)
- time3 = time.perf_counter()
- meta_data["extract_feat"] = f"{time3 - time2:0.3f}"
- meta_data["batch_data_time"] = speech_lengths.sum().item() * frontend.frame_shift * frontend.lfr_n / 1000
-
- speech = speech.to(device=kwargs["device"])
- speech_lengths = speech_lengths.to(device=kwargs["device"])
-
- # Encoder
- encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
- if isinstance(encoder_out, tuple):
- encoder_out = encoder_out[0]
-
- # predictor
- predictor_outs = self.calc_predictor(encoder_out, encoder_out_lens)
- pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index = predictor_outs[0], predictor_outs[1], \
- predictor_outs[2], predictor_outs[3]
- pre_token_length = pre_token_length.round().long()
- if torch.max(pre_token_length) < 1:
- return []
- decoder_outs = self.cal_decoder_with_predictor(encoder_out, encoder_out_lens, pre_acoustic_embeds,
- pre_token_length)
- decoder_out, ys_pad_lens = decoder_outs[0], decoder_outs[1]
-
- # BiCifParaformer, test no bias cif2
- _, _, us_alphas, us_peaks = self.calc_predictor_timestamp(encoder_out, encoder_out_lens,
- pre_token_length)
-
- results = []
- b, n, d = decoder_out.size()
- for i in range(b):
- x = encoder_out[i, :encoder_out_lens[i], :]
- am_scores = decoder_out[i, :pre_token_length[i], :]
- if self.beam_search is not None:
- nbest_hyps = self.beam_search(
- x=x, am_scores=am_scores, maxlenratio=kwargs.get("maxlenratio", 0.0),
- minlenratio=kwargs.get("minlenratio", 0.0)
- )
-
- nbest_hyps = nbest_hyps[: self.nbest]
- else:
-
- yseq = am_scores.argmax(dim=-1)
- score = am_scores.max(dim=-1)[0]
- score = torch.sum(score, dim=-1)
- # pad with mask tokens to ensure compatibility with sos/eos tokens
- yseq = torch.tensor(
- [self.sos] + yseq.tolist() + [self.eos], device=yseq.device
- )
- nbest_hyps = [Hypothesis(yseq=yseq, score=score)]
- for nbest_idx, hyp in enumerate(nbest_hyps):
- ibest_writer = None
- if kwargs.get("output_dir") is not None:
- if not hasattr(self, "writer"):
- self.writer = DatadirWriter(kwargs.get("output_dir"))
- ibest_writer = self.writer[f"{nbest_idx+1}best_recog"]
-
- # remove sos/eos and get results
- last_pos = -1
- if isinstance(hyp.yseq, list):
- token_int = hyp.yseq[1:last_pos]
- else:
- token_int = hyp.yseq[1:last_pos].tolist()
-
- # remove blank symbol id, which is assumed to be 0
- token_int = list(filter(lambda x: x != self.eos and x != self.sos and x != self.blank_id, token_int))
-
- if tokenizer is not None:
- # Change integer-ids to tokens
- token = tokenizer.ids2tokens(token_int)
- text = tokenizer.tokens2text(token)
-
- _, timestamp = ts_prediction_lfr6_standard(us_alphas[i][:encoder_out_lens[i] * 3],
- us_peaks[i][:encoder_out_lens[i] * 3],
- copy.copy(token),
- vad_offset=kwargs.get("begin_time", 0))
-
- text_postprocessed, time_stamp_postprocessed, word_lists = postprocess_utils.sentence_postprocess(
- token, timestamp)
- result_i = {"key": key[i], "text": text_postprocessed,
- "timestamp": time_stamp_postprocessed,
- }
-
- if ibest_writer is not None:
- ibest_writer["token"][key[i]] = " ".join(token)
- # ibest_writer["text"][key[i]] = text
- ibest_writer["timestamp"][key[i]] = time_stamp_postprocessed
- ibest_writer["text"][key[i]] = text_postprocessed
- else:
- result_i = {"key": key[i], "token_int": token_int}
- results.append(result_i)
-
- return results, meta_data
|