warmup_lr.py 1.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748
  1. """Warm up learning rate scheduler module."""
  2. from typing import Union
  3. import torch
  4. from torch.optim.lr_scheduler import _LRScheduler
  5. from funasr.schedulers.abs_scheduler import AbsBatchStepScheduler
  6. class WarmupLR(_LRScheduler, AbsBatchStepScheduler):
  7. """The WarmupLR scheduler
  8. This scheduler is almost same as NoamLR Scheduler except for following difference:
  9. NoamLR:
  10. lr = optimizer.lr * model_size ** -0.5
  11. * min(step ** -0.5, step * warmup_step ** -1.5)
  12. WarmupLR:
  13. lr = optimizer.lr * warmup_step ** 0.5
  14. * min(step ** -0.5, step * warmup_step ** -1.5)
  15. Note that the maximum lr equals to optimizer.lr in this scheduler.
  16. """
  17. def __init__(
  18. self,
  19. optimizer: torch.optim.Optimizer,
  20. warmup_steps: Union[int, float] = 25000,
  21. last_epoch: int = -1,
  22. ):
  23. self.warmup_steps = warmup_steps
  24. # __init__() must be invoked before setting field
  25. # because step() is also invoked in __init__()
  26. super().__init__(optimizer, last_epoch)
  27. def __repr__(self):
  28. return f"{self.__class__.__name__}(warmup_steps={self.warmup_steps})"
  29. def get_lr(self):
  30. step_num = self.last_epoch + 1
  31. return [
  32. lr
  33. * self.warmup_steps**0.5
  34. * min(step_num**-0.5, step_num * self.warmup_steps**-1.5)
  35. for lr in self.base_lrs
  36. ]