| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748 |
- """Warm up learning rate scheduler module."""
- from typing import Union
- import torch
- from torch.optim.lr_scheduler import _LRScheduler
- from funasr.schedulers.abs_scheduler import AbsBatchStepScheduler
- class WarmupLR(_LRScheduler, AbsBatchStepScheduler):
- """The WarmupLR scheduler
- This scheduler is almost same as NoamLR Scheduler except for following difference:
- NoamLR:
- lr = optimizer.lr * model_size ** -0.5
- * min(step ** -0.5, step * warmup_step ** -1.5)
- WarmupLR:
- lr = optimizer.lr * warmup_step ** 0.5
- * min(step ** -0.5, step * warmup_step ** -1.5)
- Note that the maximum lr equals to optimizer.lr in this scheduler.
- """
- def __init__(
- self,
- optimizer: torch.optim.Optimizer,
- warmup_steps: Union[int, float] = 25000,
- last_epoch: int = -1,
- ):
- self.warmup_steps = warmup_steps
- # __init__() must be invoked before setting field
- # because step() is also invoked in __init__()
- super().__init__(optimizer, last_epoch)
- def __repr__(self):
- return f"{self.__class__.__name__}(warmup_steps={self.warmup_steps})"
- def get_lr(self):
- step_num = self.last_epoch + 1
- return [
- lr
- * self.warmup_steps**0.5
- * min(step_num**-0.5, step_num * self.warmup_steps**-1.5)
- for lr in self.base_lrs
- ]
|