| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228 |
- #!/usr/bin/env bash
- . ./path.sh || exit 1;
- # machines configuration
- CUDA_VISIBLE_DEVICES="0,1"
- gpu_num=2
- count=1
- train_cmd=utils/run.pl
- infer_cmd=utils/run.pl
- # general configuration
- lang=zh
- nlsyms_txt=none # Non-linguistic symbol list if existing.
- cleaner=none # Text cleaner.
- g2p=none # g2p method (needed if token_type=phn).
- lm_fold_length=150 # fold_length for LM training.
- word_vocab_size=10000 # Size of word vocabulary.
- token_type=char
- lm_token_list=
- nj=10
- ## path to AISHELL2 trans
- lm_train_text=
- lm_dev_text=
- lm_test_text=
- train_data_path_and_name_and_type=${lm_train_text},text,text
- train_shape_file=
- valid_data_path_and_name_and_type=${lm_dev_text},text,text
- valid_shape_file=
- lm_config=conf/train_lm_transformer.yaml
- exp_dir=./data
- tag=exp1
- model_dir="baseline_$(basename "${lm_config}" .yaml)_${lang}_${token_type}_${tag}"
- lm_exp=${exp_dir}/exp/${model_dir}
- inference_lm=valid.loss.ave.pb # Language model path for decoding.
- stage=0
- stop_stage=3
- . utils/parse_options.sh || exit 1;
- # Set bash to 'debug' mode, it will exit on :
- # -e 'error', -u 'undefined variable', -o ... 'error in pipeline', -x 'print commands',
- set -e
- set -u
- set -o pipefail
- min() {
- local a b
- a=$1
- for b in "$@"; do
- if [ "${b}" -le "${a}" ]; then
- a="${b}"
- fi
- done
- echo "${a}"
- }
- # you can set gpu num for decoding here
- gpuid_list=$CUDA_VISIBLE_DEVICES # set gpus for decoding, e.g., gpuid_list=2,3, the same as training stage by default
- ngpu=$(echo $gpuid_list | awk -F "," '{print NF}')
- mkdir -p ${exp_dir}/exp/${model_dir}
- token_list=${exp_dir}/exp/${model_dir}/vocab.txt
- blank="<blank>" # CTC blank symbole
- sos="<s>" # sos symbole
- eos="</s>" # eos symbole
- oov="<unk>" # Out of vocabulary symbol.
- if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
- if [ "${token_type}" = char ] || [ "${token_type}" = word ]; then
- echo "Stage 0: Generate character level token_list from ${lm_train_text}"
- # The first symbol in token_list must be "<blank>":
- # 0 is reserved for CTC-blank for ASR and also used as ignore-index in the other task
- python -m funasr.bin.tokenize_text \
- --token_type "${token_type}" \
- --input "${lm_train_text}" \
- --output "${token_list}" \
- --non_linguistic_symbols "${nlsyms_txt}" \
- --field 2- \
- --cleaner "${cleaner}" \
- --g2p "${g2p}" \
- --write_vocabulary true \
- --add_symbol "${blank}:0" \
- --add_symbol "${sos}:1" \
- --add_symbol "${eos}:2" \
- --add_symbol "${oov}:-1"
- else
- echo "Error: not supported --token_type '${token_type}'"
- exit 2
- fi
- lm_token_list="${token_list}"
- fi
- if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
- echo "stage 1: Data preparation"
-
- # 1. Split the key file
- _logdir="${exp_dir}/exp/${model_dir}/log"
- mkdir -p "${_logdir}"
- # Get the minimum number among ${nj} and the number lines of input files
- _nj=$(min "${nj}" "$(<${lm_train_text} wc -l)" "$(<${lm_dev_text} wc -l)")
- key_file="${lm_train_text}"
- split_scps=""
- for n in $(seq ${_nj}); do
- split_scps+=" ${_logdir}/train.${n}.scp"
- done
- # shellcheck disable=SC2086
- utils/split_scp.pl "${key_file}" ${split_scps}
- key_file="${lm_dev_text}"
- split_scps=""
- for n in $(seq ${_nj}); do
- split_scps+=" ${_logdir}/dev.${n}.scp"
- done
- # shellcheck disable=SC2086
- utils/split_scp.pl "${key_file}" ${split_scps}
- # 2. Submit jobs
- ## python ../../funasr/bin/lm_train.py \
- ${train_cmd} JOB=1:"${_nj}" "${_logdir}"/stats.JOB.log \
- python -m funasr.bin.lm_train \
- --collect_stats true \
- --use_preprocessor true \
- --token_type "${token_type}" \
- --token_list "${lm_token_list}" \
- --non_linguistic_symbols "${nlsyms_txt}" \
- --cleaner "${cleaner}" \
- --g2p "${g2p}" \
- --train_data_path_and_name_and_type "${lm_train_text},text,text" \
- --valid_data_path_and_name_and_type "${lm_dev_text},text,text" \
- --train_shape_file "${_logdir}/train.JOB.scp" \
- --valid_shape_file "${_logdir}/dev.JOB.scp" \
- --output_dir "${_logdir}/stats.JOB" \
- --config ${lm_config} || { cat "${_logdir}"/stats.*.log; exit 1; }
- # 3. Aggregate shape files
- _opts=
- for i in $(seq "${_nj}"); do
- _opts+="--input_dir ${_logdir}/stats.${i} "
- done
- lm_stats_dir=${exp_dir}/exp/${model_dir}
- # shellcheck disable=SC2086
- python -m funasr.bin.aggregate_stats_dirs ${_opts} --output_dir "${lm_stats_dir}"
- # Append the num-tokens at the last dimensions. This is used for batch-bins count
- <"${lm_stats_dir}/train/text_shape" \
- awk -v N="$(<${lm_token_list} wc -l)" '{ print $0 "," N }' \
- >"${lm_stats_dir}/train/text_shape.${token_type}"
- <"${lm_stats_dir}/valid/text_shape" \
- awk -v N="$(<${lm_token_list} wc -l)" '{ print $0 "," N }' \
- >"${lm_stats_dir}/valid/text_shape.${token_type}"
-
- train_shape_file=${lm_stats_dir}/train/text_shape.${token_type}
- valid_shape_file=${lm_stats_dir}/valid/text_shape.${token_type}
-
- fi
- # Training Stage
- world_size=$gpu_num # run on one machine
- if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
- echo "stage 2: Training"
- mkdir -p ${lm_exp}
- mkdir -p ${lm_exp}/log
- INIT_FILE=${lm_exp}/ddp_init
- if [ -f $INIT_FILE ];then
- rm -f $INIT_FILE
- fi
- init_method=file://$(readlink -f $INIT_FILE)
- echo "$0: init method is $init_method"
- for ((i = 0; i < $gpu_num; ++i)); do
- {
- rank=$i
- local_rank=$i
- gpu_id=$(echo $CUDA_VISIBLE_DEVICES | cut -d',' -f$[$i+1])
- python ../../../funasr/bin/lm_train.py \
- --gpu_id ${gpu_id} \
- --use_preprocessor true \
- --token_type "${token_type}" \
- --token_list "${lm_token_list}" \
- --non_linguistic_symbols "${nlsyms_txt}" \
- --cleaner "${cleaner}" \
- --train_data_path_and_name_and_type "${train_data_path_and_name_and_type}" \
- --train_shape_file "${train_shape_file}" \
- --valid_data_path_and_name_and_type "${valid_data_path_and_name_and_type}" \
- --valid_shape_file "${valid_shape_file}" \
- --fold_length "${lm_fold_length}" \
- --resume true \
- --output_dir "${lm_exp}" \
- --config ${lm_config} \
- --ngpu ${gpu_num} \
- --num_worker_count ${count} \
- --multiprocessing_distributed true \
- --dist_init_method ${init_method} \
- --dist_world_size ${world_size} \
- --dist_rank ${rank} \
- --local_rank ${local_rank} 1> ${exp_dir}/exp/${model_dir}/log/train.log.$i 2>&1
- } &
- done
- wait
- fi
- # Testing Stage
- gpu_num=1
- if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
- echo "Stage 3: Calc perplexity: ${lm_test_text}"
-
- python ../../../funasr/bin/lm_inference_launch.py \
- --output_dir "${lm_exp}/perplexity_test/output.1" \
- --ngpu "${gpu_num}" \
- --batch_size 1 \
- --train_config "${lm_exp}"/config.yaml \
- --model_file "${lm_exp}/${inference_lm}" \
- --data_path_and_name_and_type "${lm_test_text},text,text" \
- --num_workers 1 \
- --gpuid_list 0 \
- --mode "transformer" \
- --split_with_space false
- fi
|