| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332 |
- # -*- encoding: utf-8 -*-
- #!/usr/bin/env python3
- # Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
- # MIT License (https://opensource.org/licenses/MIT)
- import argparse
- import logging
- import os
- import sys
- from typing import Union, Dict, Any
- from funasr.utils import config_argparse
- from funasr.utils.cli_utils import get_commandline_args
- from funasr.utils.types import str2bool
- from funasr.utils.types import str2triple_str
- from funasr.utils.types import str_or_none
- import argparse
- import logging
- import os
- import sys
- from pathlib import Path
- from typing import Any
- from typing import List
- from typing import Optional
- from typing import Sequence
- from typing import Tuple
- from typing import Union
- import numpy as np
- import torch
- from kaldiio import WriteHelper
- from typeguard import check_argument_types
- from typeguard import check_return_type
- from funasr.utils.cli_utils import get_commandline_args
- from funasr.tasks.sv import SVTask
- from funasr.torch_utils.device_funcs import to_device
- from funasr.torch_utils.set_all_random_seed import set_all_random_seed
- from funasr.utils import config_argparse
- from funasr.utils.types import str2bool
- from funasr.utils.types import str2triple_str
- from funasr.utils.types import str_or_none
- from funasr.utils.misc import statistic_model_parameters
- from funasr.bin.sv_infer import Speech2Xvector
- def inference_sv(
- output_dir: Optional[str] = None,
- batch_size: int = 1,
- dtype: str = "float32",
- ngpu: int = 1,
- seed: int = 0,
- num_workers: int = 0,
- log_level: Union[int, str] = "INFO",
- key_file: Optional[str] = None,
- sv_train_config: Optional[str] = "sv.yaml",
- sv_model_file: Optional[str] = "sv.pb",
- model_tag: Optional[str] = None,
- allow_variable_data_keys: bool = True,
- streaming: bool = False,
- embedding_node: str = "resnet1_dense",
- sv_threshold: float = 0.9465,
- param_dict: Optional[dict] = None,
- **kwargs,
- ):
- assert check_argument_types()
- ncpu = kwargs.get("ncpu", 1)
- torch.set_num_threads(ncpu)
-
- if batch_size > 1:
- raise NotImplementedError("batch decoding is not implemented")
- if ngpu > 1:
- raise NotImplementedError("only single GPU decoding is supported")
-
- logging.basicConfig(
- level=log_level,
- format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
- )
- logging.info("param_dict: {}".format(param_dict))
-
- if ngpu >= 1 and torch.cuda.is_available():
- device = "cuda"
- else:
- device = "cpu"
-
- # 1. Set random-seed
- set_all_random_seed(seed)
-
- # 2. Build speech2xvector
- speech2xvector_kwargs = dict(
- sv_train_config=sv_train_config,
- sv_model_file=sv_model_file,
- device=device,
- dtype=dtype,
- streaming=streaming,
- embedding_node=embedding_node
- )
- logging.info("speech2xvector_kwargs: {}".format(speech2xvector_kwargs))
- speech2xvector = Speech2Xvector.from_pretrained(
- model_tag=model_tag,
- **speech2xvector_kwargs,
- )
- speech2xvector.sv_model.eval()
-
- def _forward(
- data_path_and_name_and_type: Sequence[Tuple[str, str, str]] = None,
- raw_inputs: Union[np.ndarray, torch.Tensor] = None,
- output_dir_v2: Optional[str] = None,
- param_dict: Optional[dict] = None,
- ):
- logging.info("param_dict: {}".format(param_dict))
- if data_path_and_name_and_type is None and raw_inputs is not None:
- if isinstance(raw_inputs, torch.Tensor):
- raw_inputs = raw_inputs.numpy()
- data_path_and_name_and_type = [raw_inputs, "speech", "waveform"]
-
- # 3. Build data-iterator
- loader = SVTask.build_streaming_iterator(
- data_path_and_name_and_type,
- dtype=dtype,
- batch_size=batch_size,
- key_file=key_file,
- num_workers=num_workers,
- preprocess_fn=None,
- collate_fn=None,
- allow_variable_data_keys=allow_variable_data_keys,
- inference=True,
- )
-
- # 7 .Start for-loop
- output_path = output_dir_v2 if output_dir_v2 is not None else output_dir
- embd_writer, ref_embd_writer, score_writer = None, None, None
- if output_path is not None:
- os.makedirs(output_path, exist_ok=True)
- embd_writer = WriteHelper("ark,scp:{}/xvector.ark,{}/xvector.scp".format(output_path, output_path))
- sv_result_list = []
- for keys, batch in loader:
- assert isinstance(batch, dict), type(batch)
- assert all(isinstance(s, str) for s in keys), keys
- _bs = len(next(iter(batch.values())))
- assert len(keys) == _bs, f"{len(keys)} != {_bs}"
- batch = {k: v[0] for k, v in batch.items() if not k.endswith("_lengths")}
-
- embedding, ref_embedding, score = speech2xvector(**batch)
- # Only supporting batch_size==1
- key = keys[0]
- normalized_score = 0.0
- if score is not None:
- score = score.item()
- normalized_score = max(score - sv_threshold, 0.0) / (1.0 - sv_threshold) * 100.0
- item = {"key": key, "value": normalized_score}
- else:
- item = {"key": key, "value": embedding.squeeze(0).cpu().numpy()}
- sv_result_list.append(item)
- if output_path is not None:
- embd_writer(key, embedding[0].cpu().numpy())
- if ref_embedding is not None:
- if ref_embd_writer is None:
- ref_embd_writer = WriteHelper(
- "ark,scp:{}/ref_xvector.ark,{}/ref_xvector.scp".format(output_path, output_path)
- )
- score_writer = open(os.path.join(output_path, "score.txt"), "w")
- ref_embd_writer(key, ref_embedding[0].cpu().numpy())
- score_writer.write("{} {:.6f}\n".format(key, normalized_score))
-
- if output_path is not None:
- embd_writer.close()
- if ref_embd_writer is not None:
- ref_embd_writer.close()
- score_writer.close()
-
- return sv_result_list
-
- return _forward
- def inference_launch(mode, **kwargs):
- if mode == "sv":
- return inference_sv(**kwargs)
- else:
- logging.info("Unknown decoding mode: {}".format(mode))
- return None
- def get_parser():
- parser = config_argparse.ArgumentParser(
- description="Speaker Verification",
- formatter_class=argparse.ArgumentDefaultsHelpFormatter,
- )
- # Note(kamo): Use '_' instead of '-' as separator.
- # '-' is confusing if written in yaml.
- parser.add_argument(
- "--log_level",
- type=lambda x: x.upper(),
- default="INFO",
- choices=("CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG", "NOTSET"),
- help="The verbose level of logging",
- )
- parser.add_argument("--output_dir", type=str, required=False)
- parser.add_argument(
- "--ngpu",
- type=int,
- default=0,
- help="The number of gpus. 0 indicates CPU mode",
- )
- parser.add_argument(
- "--njob",
- type=int,
- default=1,
- help="The number of jobs for each gpu",
- )
- parser.add_argument(
- "--gpuid_list",
- type=str,
- default="",
- help="The visible gpus",
- )
- parser.add_argument("--seed", type=int, default=0, help="Random seed")
- parser.add_argument(
- "--dtype",
- default="float32",
- choices=["float16", "float32", "float64"],
- help="Data type",
- )
- parser.add_argument(
- "--num_workers",
- type=int,
- default=1,
- help="The number of workers used for DataLoader",
- )
- group = parser.add_argument_group("Input data related")
- group.add_argument(
- "--data_path_and_name_and_type",
- type=str2triple_str,
- required=False,
- action="append",
- )
- group.add_argument("--key_file", type=str_or_none)
- group.add_argument("--allow_variable_data_keys", type=str2bool, default=True)
- group = parser.add_argument_group("The model configuration related")
- group.add_argument(
- "--vad_infer_config",
- type=str,
- help="VAD infer configuration",
- )
- group.add_argument(
- "--vad_model_file",
- type=str,
- help="VAD model parameter file",
- )
- group.add_argument(
- "--sv_train_config",
- type=str,
- help="ASR training configuration",
- )
- group.add_argument(
- "--sv_model_file",
- type=str,
- help="ASR model parameter file",
- )
- group.add_argument(
- "--cmvn_file",
- type=str,
- help="Global CMVN file",
- )
- group.add_argument(
- "--model_tag",
- type=str,
- help="Pretrained model tag. If specify this option, *_train_config and "
- "*_file will be overwritten",
- )
- group = parser.add_argument_group("The inference configuration related")
- group.add_argument(
- "--batch_size",
- type=int,
- default=1,
- help="The batch size for inference",
- )
- group.add_argument(
- "--sv_threshold",
- type=float,
- default=0.9465,
- help="The threshold for verification"
- )
- parser.add_argument(
- "--embedding_node",
- type=str,
- default="resnet1_dense",
- help="The network node to extract embedding"
- )
- return parser
- def main(cmd=None):
- print(get_commandline_args(), file=sys.stderr)
- parser = get_parser()
- parser.add_argument(
- "--mode",
- type=str,
- default="sv",
- help="The decoding mode",
- )
- args = parser.parse_args(cmd)
- kwargs = vars(args)
- kwargs.pop("config", None)
- # set logging messages
- logging.basicConfig(
- level=args.log_level,
- format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
- )
- logging.info("Decoding args: {}".format(kwargs))
- # gpu setting
- if args.ngpu > 0:
- jobid = int(args.output_dir.split(".")[-1])
- gpuid = args.gpuid_list.split(",")[(jobid - 1) // args.njob]
- os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
- os.environ["CUDA_VISIBLE_DEVICES"] = gpuid
- inference_pipeline = inference_launch(**kwargs)
- return inference_pipeline(kwargs["data_path_and_name_and_type"])
- if __name__ == "__main__":
- main()
|