sv_inference_launch.py 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332
  1. # -*- encoding: utf-8 -*-
  2. #!/usr/bin/env python3
  3. # Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
  4. # MIT License (https://opensource.org/licenses/MIT)
  5. import argparse
  6. import logging
  7. import os
  8. import sys
  9. from typing import Union, Dict, Any
  10. from funasr.utils import config_argparse
  11. from funasr.utils.cli_utils import get_commandline_args
  12. from funasr.utils.types import str2bool
  13. from funasr.utils.types import str2triple_str
  14. from funasr.utils.types import str_or_none
  15. import argparse
  16. import logging
  17. import os
  18. import sys
  19. from pathlib import Path
  20. from typing import Any
  21. from typing import List
  22. from typing import Optional
  23. from typing import Sequence
  24. from typing import Tuple
  25. from typing import Union
  26. import numpy as np
  27. import torch
  28. from kaldiio import WriteHelper
  29. from typeguard import check_argument_types
  30. from typeguard import check_return_type
  31. from funasr.utils.cli_utils import get_commandline_args
  32. from funasr.tasks.sv import SVTask
  33. from funasr.torch_utils.device_funcs import to_device
  34. from funasr.torch_utils.set_all_random_seed import set_all_random_seed
  35. from funasr.utils import config_argparse
  36. from funasr.utils.types import str2bool
  37. from funasr.utils.types import str2triple_str
  38. from funasr.utils.types import str_or_none
  39. from funasr.utils.misc import statistic_model_parameters
  40. from funasr.bin.sv_infer import Speech2Xvector
  41. def inference_sv(
  42. output_dir: Optional[str] = None,
  43. batch_size: int = 1,
  44. dtype: str = "float32",
  45. ngpu: int = 1,
  46. seed: int = 0,
  47. num_workers: int = 0,
  48. log_level: Union[int, str] = "INFO",
  49. key_file: Optional[str] = None,
  50. sv_train_config: Optional[str] = "sv.yaml",
  51. sv_model_file: Optional[str] = "sv.pb",
  52. model_tag: Optional[str] = None,
  53. allow_variable_data_keys: bool = True,
  54. streaming: bool = False,
  55. embedding_node: str = "resnet1_dense",
  56. sv_threshold: float = 0.9465,
  57. param_dict: Optional[dict] = None,
  58. **kwargs,
  59. ):
  60. assert check_argument_types()
  61. ncpu = kwargs.get("ncpu", 1)
  62. torch.set_num_threads(ncpu)
  63. if batch_size > 1:
  64. raise NotImplementedError("batch decoding is not implemented")
  65. if ngpu > 1:
  66. raise NotImplementedError("only single GPU decoding is supported")
  67. logging.basicConfig(
  68. level=log_level,
  69. format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
  70. )
  71. logging.info("param_dict: {}".format(param_dict))
  72. if ngpu >= 1 and torch.cuda.is_available():
  73. device = "cuda"
  74. else:
  75. device = "cpu"
  76. # 1. Set random-seed
  77. set_all_random_seed(seed)
  78. # 2. Build speech2xvector
  79. speech2xvector_kwargs = dict(
  80. sv_train_config=sv_train_config,
  81. sv_model_file=sv_model_file,
  82. device=device,
  83. dtype=dtype,
  84. streaming=streaming,
  85. embedding_node=embedding_node
  86. )
  87. logging.info("speech2xvector_kwargs: {}".format(speech2xvector_kwargs))
  88. speech2xvector = Speech2Xvector.from_pretrained(
  89. model_tag=model_tag,
  90. **speech2xvector_kwargs,
  91. )
  92. speech2xvector.sv_model.eval()
  93. def _forward(
  94. data_path_and_name_and_type: Sequence[Tuple[str, str, str]] = None,
  95. raw_inputs: Union[np.ndarray, torch.Tensor] = None,
  96. output_dir_v2: Optional[str] = None,
  97. param_dict: Optional[dict] = None,
  98. ):
  99. logging.info("param_dict: {}".format(param_dict))
  100. if data_path_and_name_and_type is None and raw_inputs is not None:
  101. if isinstance(raw_inputs, torch.Tensor):
  102. raw_inputs = raw_inputs.numpy()
  103. data_path_and_name_and_type = [raw_inputs, "speech", "waveform"]
  104. # 3. Build data-iterator
  105. loader = SVTask.build_streaming_iterator(
  106. data_path_and_name_and_type,
  107. dtype=dtype,
  108. batch_size=batch_size,
  109. key_file=key_file,
  110. num_workers=num_workers,
  111. preprocess_fn=None,
  112. collate_fn=None,
  113. allow_variable_data_keys=allow_variable_data_keys,
  114. inference=True,
  115. )
  116. # 7 .Start for-loop
  117. output_path = output_dir_v2 if output_dir_v2 is not None else output_dir
  118. embd_writer, ref_embd_writer, score_writer = None, None, None
  119. if output_path is not None:
  120. os.makedirs(output_path, exist_ok=True)
  121. embd_writer = WriteHelper("ark,scp:{}/xvector.ark,{}/xvector.scp".format(output_path, output_path))
  122. sv_result_list = []
  123. for keys, batch in loader:
  124. assert isinstance(batch, dict), type(batch)
  125. assert all(isinstance(s, str) for s in keys), keys
  126. _bs = len(next(iter(batch.values())))
  127. assert len(keys) == _bs, f"{len(keys)} != {_bs}"
  128. batch = {k: v[0] for k, v in batch.items() if not k.endswith("_lengths")}
  129. embedding, ref_embedding, score = speech2xvector(**batch)
  130. # Only supporting batch_size==1
  131. key = keys[0]
  132. normalized_score = 0.0
  133. if score is not None:
  134. score = score.item()
  135. normalized_score = max(score - sv_threshold, 0.0) / (1.0 - sv_threshold) * 100.0
  136. item = {"key": key, "value": normalized_score}
  137. else:
  138. item = {"key": key, "value": embedding.squeeze(0).cpu().numpy()}
  139. sv_result_list.append(item)
  140. if output_path is not None:
  141. embd_writer(key, embedding[0].cpu().numpy())
  142. if ref_embedding is not None:
  143. if ref_embd_writer is None:
  144. ref_embd_writer = WriteHelper(
  145. "ark,scp:{}/ref_xvector.ark,{}/ref_xvector.scp".format(output_path, output_path)
  146. )
  147. score_writer = open(os.path.join(output_path, "score.txt"), "w")
  148. ref_embd_writer(key, ref_embedding[0].cpu().numpy())
  149. score_writer.write("{} {:.6f}\n".format(key, normalized_score))
  150. if output_path is not None:
  151. embd_writer.close()
  152. if ref_embd_writer is not None:
  153. ref_embd_writer.close()
  154. score_writer.close()
  155. return sv_result_list
  156. return _forward
  157. def inference_launch(mode, **kwargs):
  158. if mode == "sv":
  159. return inference_sv(**kwargs)
  160. else:
  161. logging.info("Unknown decoding mode: {}".format(mode))
  162. return None
  163. def get_parser():
  164. parser = config_argparse.ArgumentParser(
  165. description="Speaker Verification",
  166. formatter_class=argparse.ArgumentDefaultsHelpFormatter,
  167. )
  168. # Note(kamo): Use '_' instead of '-' as separator.
  169. # '-' is confusing if written in yaml.
  170. parser.add_argument(
  171. "--log_level",
  172. type=lambda x: x.upper(),
  173. default="INFO",
  174. choices=("CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG", "NOTSET"),
  175. help="The verbose level of logging",
  176. )
  177. parser.add_argument("--output_dir", type=str, required=False)
  178. parser.add_argument(
  179. "--ngpu",
  180. type=int,
  181. default=0,
  182. help="The number of gpus. 0 indicates CPU mode",
  183. )
  184. parser.add_argument(
  185. "--njob",
  186. type=int,
  187. default=1,
  188. help="The number of jobs for each gpu",
  189. )
  190. parser.add_argument(
  191. "--gpuid_list",
  192. type=str,
  193. default="",
  194. help="The visible gpus",
  195. )
  196. parser.add_argument("--seed", type=int, default=0, help="Random seed")
  197. parser.add_argument(
  198. "--dtype",
  199. default="float32",
  200. choices=["float16", "float32", "float64"],
  201. help="Data type",
  202. )
  203. parser.add_argument(
  204. "--num_workers",
  205. type=int,
  206. default=1,
  207. help="The number of workers used for DataLoader",
  208. )
  209. group = parser.add_argument_group("Input data related")
  210. group.add_argument(
  211. "--data_path_and_name_and_type",
  212. type=str2triple_str,
  213. required=False,
  214. action="append",
  215. )
  216. group.add_argument("--key_file", type=str_or_none)
  217. group.add_argument("--allow_variable_data_keys", type=str2bool, default=True)
  218. group = parser.add_argument_group("The model configuration related")
  219. group.add_argument(
  220. "--vad_infer_config",
  221. type=str,
  222. help="VAD infer configuration",
  223. )
  224. group.add_argument(
  225. "--vad_model_file",
  226. type=str,
  227. help="VAD model parameter file",
  228. )
  229. group.add_argument(
  230. "--sv_train_config",
  231. type=str,
  232. help="ASR training configuration",
  233. )
  234. group.add_argument(
  235. "--sv_model_file",
  236. type=str,
  237. help="ASR model parameter file",
  238. )
  239. group.add_argument(
  240. "--cmvn_file",
  241. type=str,
  242. help="Global CMVN file",
  243. )
  244. group.add_argument(
  245. "--model_tag",
  246. type=str,
  247. help="Pretrained model tag. If specify this option, *_train_config and "
  248. "*_file will be overwritten",
  249. )
  250. group = parser.add_argument_group("The inference configuration related")
  251. group.add_argument(
  252. "--batch_size",
  253. type=int,
  254. default=1,
  255. help="The batch size for inference",
  256. )
  257. group.add_argument(
  258. "--sv_threshold",
  259. type=float,
  260. default=0.9465,
  261. help="The threshold for verification"
  262. )
  263. parser.add_argument(
  264. "--embedding_node",
  265. type=str,
  266. default="resnet1_dense",
  267. help="The network node to extract embedding"
  268. )
  269. return parser
  270. def main(cmd=None):
  271. print(get_commandline_args(), file=sys.stderr)
  272. parser = get_parser()
  273. parser.add_argument(
  274. "--mode",
  275. type=str,
  276. default="sv",
  277. help="The decoding mode",
  278. )
  279. args = parser.parse_args(cmd)
  280. kwargs = vars(args)
  281. kwargs.pop("config", None)
  282. # set logging messages
  283. logging.basicConfig(
  284. level=args.log_level,
  285. format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
  286. )
  287. logging.info("Decoding args: {}".format(kwargs))
  288. # gpu setting
  289. if args.ngpu > 0:
  290. jobid = int(args.output_dir.split(".")[-1])
  291. gpuid = args.gpuid_list.split(",")[(jobid - 1) // args.njob]
  292. os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
  293. os.environ["CUDA_VISIBLE_DEVICES"] = gpuid
  294. inference_pipeline = inference_launch(**kwargs)
  295. return inference_pipeline(kwargs["data_path_and_name_and_type"])
  296. if __name__ == "__main__":
  297. main()