run.sh 8.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223
  1. #!/usr/bin/env bash
  2. . ./path.sh || exit 1;
  3. # machines configuration
  4. CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
  5. gpu_num=8
  6. count=1
  7. gpu_inference=true # Whether to perform gpu decoding, set false for cpu decoding
  8. # for gpu decoding, inference_nj=ngpu*njob; for cpu decoding, inference_nj=njob
  9. njob=5
  10. train_cmd=utils/run.pl
  11. infer_cmd=utils/run.pl
  12. # general configuration
  13. feats_dir="../DATA" #feature output dictionary
  14. exp_dir="."
  15. lang=en
  16. token_type=bpe
  17. type=sound
  18. scp=wav.scp
  19. speed_perturb="0.9 1.0 1.1"
  20. stage=0
  21. stop_stage=5
  22. # feature configuration
  23. feats_dim=80
  24. nj=64
  25. # data
  26. raw_data=
  27. data_url=www.openslr.org/resources/12
  28. # bpe model
  29. nbpe=5000
  30. bpemode=unigram
  31. # exp tag
  32. tag="exp1"
  33. . utils/parse_options.sh || exit 1;
  34. # Set bash to 'debug' mode, it will exit on :
  35. # -e 'error', -u 'undefined variable', -o ... 'error in pipeline', -x 'print commands',
  36. set -e
  37. set -u
  38. set -o pipefail
  39. train_set=train_960
  40. valid_set=dev
  41. test_sets="test_clean test_other dev_clean dev_other"
  42. asr_config=conf/train_asr_conformer.yaml
  43. model_dir="baseline_$(basename "${asr_config}" .yaml)_${lang}_${token_type}_${tag}"
  44. inference_config=conf/decode_asr_transformer_ctc0.3_beam5yaml
  45. #inference_config=conf/decode_asr_transformer_ctc0.3_beam60.yaml
  46. inference_asr_model=valid.acc.ave_10best.pb
  47. # you can set gpu num for decoding here
  48. gpuid_list=$CUDA_VISIBLE_DEVICES # set gpus for decoding, the same as training stage by default
  49. ngpu=$(echo $gpuid_list | awk -F "," '{print NF}')
  50. if ${gpu_inference}; then
  51. inference_nj=$[${ngpu}*${njob}]
  52. _ngpu=1
  53. else
  54. inference_nj=$njob
  55. _ngpu=0
  56. fi
  57. if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then
  58. echo "stage -1: Data Download"
  59. for part in dev-clean test-clean dev-other test-other train-clean-100 train-clean-360 train-other-500; do
  60. local/download_and_untar.sh ${raw_data} ${data_url} ${part}
  61. done
  62. fi
  63. if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
  64. echo "stage 0: Data preparation"
  65. # Data preparation
  66. for x in dev-clean dev-other test-clean test-other train-clean-100 train-clean-360 train-other-500; do
  67. local/data_prep.sh ${raw_data}/LibriSpeech/${x} ${feats_dir}/data/${x//-/_}
  68. done
  69. mkdir $feats_dir/data/$valid_set
  70. dev_sets="dev_clean dev_other"
  71. for file in wav.scp text; do
  72. ( for f in $dev_sets; do cat $feats_dir/data/$f/$file; done ) | sort -k1 > $feats_dir/data/$valid_set/$file || exit 1;
  73. done
  74. mkdir $feats_dir/data/$train_set
  75. train_sets="train_clean_100 train_clean_360 train_other_500"
  76. for file in wav.scp text; do
  77. ( for f in $train_sets; do cat $feats_dir/data/$f/$file; done ) | sort -k1 > $feats_dir/data/$train_set/$file || exit 1;
  78. done
  79. fi
  80. if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
  81. echo "stage 1: Feature and CMVN Generation"
  82. utils/compute_cmvn.sh --fbankdir ${feats_dir}/data/${train_set} --cmd "$train_cmd" --nj $nj --feats_dim ${feats_dim} --config_file "$asr_config" --scale 1.0
  83. fi
  84. token_list=${feats_dir}/data/lang_char/${train_set}_${bpemode}${nbpe}_units.txt
  85. bpemodel=${feats_dir}/data/lang_char/${train_set}_${bpemode}${nbpe}
  86. echo "dictionary: ${token_list}"
  87. if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
  88. ### Task dependent. You have to check non-linguistic symbols used in the corpus.
  89. echo "stage 2: Dictionary and Json Data Preparation"
  90. mkdir -p ${feats_dir}/data/lang_char/
  91. echo "<blank>" > ${token_list}
  92. echo "<s>" >> ${token_list}
  93. echo "</s>" >> ${token_list}
  94. cut -f 2- -d" " ${feats_dir}/data/${train_set}/text > ${feats_dir}/data/lang_char/input.txt
  95. local/spm_train.py --input=${feats_dir}/data/lang_char/input.txt --vocab_size=${nbpe} --model_type=${bpemode} --model_prefix=${bpemodel} --input_sentence_size=100000000
  96. local/spm_encode.py --model=${bpemodel}.model --output_format=piece < ${feats_dir}/data/lang_char/input.txt | tr ' ' '\n' | sort | uniq | awk '{print $0}' >> ${token_list}
  97. echo "<unk>" >> ${token_list}
  98. fi
  99. # LM Training Stage
  100. world_size=$gpu_num # run on one machine
  101. if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
  102. echo "stage 3: LM Training"
  103. fi
  104. # ASR Training Stage
  105. world_size=$gpu_num # run on one machine
  106. if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
  107. echo "stage 4: ASR Training"
  108. mkdir -p ${exp_dir}/exp/${model_dir}
  109. mkdir -p ${exp_dir}/exp/${model_dir}/log
  110. INIT_FILE=${exp_dir}/exp/${model_dir}/ddp_init
  111. if [ -f $INIT_FILE ];then
  112. rm -f $INIT_FILE
  113. fi
  114. init_method=file://$(readlink -f $INIT_FILE)
  115. echo "$0: init method is $init_method"
  116. for ((i = 0; i < $gpu_num; ++i)); do
  117. {
  118. rank=$i
  119. local_rank=$i
  120. gpu_id=$(echo $CUDA_VISIBLE_DEVICES | cut -d',' -f$[$i+1])
  121. train.py \
  122. --task_name asr \
  123. --gpu_id $gpu_id \
  124. --use_preprocessor true \
  125. --split_with_space false \
  126. --bpemodel ${bpemodel}.model \
  127. --token_type $token_type \
  128. --token_list $token_list \
  129. --data_dir ${feats_dir}/data \
  130. --train_set ${train_set} \
  131. --valid_set ${valid_set} \
  132. --cmvn_file ${feats_dir}/data/${train_set}/cmvn/am.mvn \
  133. --speed_perturb ${speed_perturb} \
  134. --resume true \
  135. --output_dir ${exp_dir}/exp/${model_dir} \
  136. --config $asr_config \
  137. --ngpu $gpu_num \
  138. --num_worker_count $count \
  139. --multiprocessing_distributed true \
  140. --dist_init_method $init_method \
  141. --dist_world_size $world_size \
  142. --dist_rank $rank \
  143. --local_rank $local_rank 1> ${exp_dir}/exp/${model_dir}/log/train.log.$i 2>&1
  144. } &
  145. done
  146. wait
  147. fi
  148. # Testing Stage
  149. if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
  150. echo "stage 5: Inference"
  151. for dset in ${test_sets}; do
  152. asr_exp=${exp_dir}/exp/${model_dir}
  153. inference_tag="$(basename "${inference_config}" .yaml)"
  154. _dir="${asr_exp}/${inference_tag}/${inference_asr_model}/${dset}"
  155. _logdir="${_dir}/logdir"
  156. if [ -d ${_dir} ]; then
  157. echo "${_dir} is already exists. if you want to decode again, please delete this dir first."
  158. exit 0
  159. fi
  160. mkdir -p "${_logdir}"
  161. _data="${feats_dir}/data/${dset}"
  162. key_file=${_data}/${scp}
  163. num_scp_file="$(<${key_file} wc -l)"
  164. _nj=$([ $inference_nj -le $num_scp_file ] && echo "$inference_nj" || echo "$num_scp_file")
  165. split_scps=
  166. for n in $(seq "${_nj}"); do
  167. split_scps+=" ${_logdir}/keys.${n}.scp"
  168. done
  169. # shellcheck disable=SC2086
  170. utils/split_scp.pl "${key_file}" ${split_scps}
  171. _opts=
  172. if [ -n "${inference_config}" ]; then
  173. _opts+="--config ${inference_config} "
  174. fi
  175. ${infer_cmd} --gpu "${_ngpu}" --max-jobs-run "${_nj}" JOB=1:"${_nj}" "${_logdir}"/asr_inference.JOB.log \
  176. python -m funasr.bin.asr_inference_launch \
  177. --batch_size 1 \
  178. --ngpu "${_ngpu}" \
  179. --njob ${njob} \
  180. --gpuid_list ${gpuid_list} \
  181. --data_path_and_name_and_type "${_data}/${scp},speech,${type}" \
  182. --cmvn_file ${feats_dir}/data/${train_set}/cmvn/am.mvn \
  183. --key_file "${_logdir}"/keys.JOB.scp \
  184. --asr_train_config "${asr_exp}"/config.yaml \
  185. --asr_model_file "${asr_exp}"/"${inference_asr_model}" \
  186. --output_dir "${_logdir}"/output.JOB \
  187. --mode asr \
  188. ${_opts}
  189. for f in token token_int score text; do
  190. if [ -f "${_logdir}/output.1/1best_recog/${f}" ]; then
  191. for i in $(seq "${_nj}"); do
  192. cat "${_logdir}/output.${i}/1best_recog/${f}"
  193. done | sort -k1 >"${_dir}/${f}"
  194. fi
  195. done
  196. python utils/compute_wer.py ${_data}/text ${_dir}/text ${_dir}/text.cer
  197. tail -n 3 ${_dir}/text.cer > ${_dir}/text.cer.txt
  198. cat ${_dir}/text.cer.txt
  199. done
  200. fi