| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223 |
- #!/usr/bin/env bash
- . ./path.sh || exit 1;
- # machines configuration
- CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
- gpu_num=8
- count=1
- gpu_inference=true # Whether to perform gpu decoding, set false for cpu decoding
- # for gpu decoding, inference_nj=ngpu*njob; for cpu decoding, inference_nj=njob
- njob=5
- train_cmd=utils/run.pl
- infer_cmd=utils/run.pl
- # general configuration
- feats_dir="../DATA" #feature output dictionary
- exp_dir="."
- lang=en
- token_type=bpe
- type=sound
- scp=wav.scp
- speed_perturb="0.9 1.0 1.1"
- stage=0
- stop_stage=5
- # feature configuration
- feats_dim=80
- nj=64
- # data
- raw_data=
- data_url=www.openslr.org/resources/12
- # bpe model
- nbpe=5000
- bpemode=unigram
- # exp tag
- tag="exp1"
- . utils/parse_options.sh || exit 1;
- # Set bash to 'debug' mode, it will exit on :
- # -e 'error', -u 'undefined variable', -o ... 'error in pipeline', -x 'print commands',
- set -e
- set -u
- set -o pipefail
- train_set=train_960
- valid_set=dev
- test_sets="test_clean test_other dev_clean dev_other"
- asr_config=conf/train_asr_conformer.yaml
- model_dir="baseline_$(basename "${asr_config}" .yaml)_${lang}_${token_type}_${tag}"
- inference_config=conf/decode_asr_transformer_ctc0.3_beam5yaml
- #inference_config=conf/decode_asr_transformer_ctc0.3_beam60.yaml
- inference_asr_model=valid.acc.ave_10best.pb
- # you can set gpu num for decoding here
- gpuid_list=$CUDA_VISIBLE_DEVICES # set gpus for decoding, the same as training stage by default
- ngpu=$(echo $gpuid_list | awk -F "," '{print NF}')
- if ${gpu_inference}; then
- inference_nj=$[${ngpu}*${njob}]
- _ngpu=1
- else
- inference_nj=$njob
- _ngpu=0
- fi
- if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then
- echo "stage -1: Data Download"
- for part in dev-clean test-clean dev-other test-other train-clean-100 train-clean-360 train-other-500; do
- local/download_and_untar.sh ${raw_data} ${data_url} ${part}
- done
- fi
- if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
- echo "stage 0: Data preparation"
- # Data preparation
- for x in dev-clean dev-other test-clean test-other train-clean-100 train-clean-360 train-other-500; do
- local/data_prep.sh ${raw_data}/LibriSpeech/${x} ${feats_dir}/data/${x//-/_}
- done
- mkdir $feats_dir/data/$valid_set
- dev_sets="dev_clean dev_other"
- for file in wav.scp text; do
- ( for f in $dev_sets; do cat $feats_dir/data/$f/$file; done ) | sort -k1 > $feats_dir/data/$valid_set/$file || exit 1;
- done
- mkdir $feats_dir/data/$train_set
- train_sets="train_clean_100 train_clean_360 train_other_500"
- for file in wav.scp text; do
- ( for f in $train_sets; do cat $feats_dir/data/$f/$file; done ) | sort -k1 > $feats_dir/data/$train_set/$file || exit 1;
- done
- fi
- if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
- echo "stage 1: Feature and CMVN Generation"
- utils/compute_cmvn.sh --fbankdir ${feats_dir}/data/${train_set} --cmd "$train_cmd" --nj $nj --feats_dim ${feats_dim} --config_file "$asr_config" --scale 1.0
- fi
- token_list=${feats_dir}/data/lang_char/${train_set}_${bpemode}${nbpe}_units.txt
- bpemodel=${feats_dir}/data/lang_char/${train_set}_${bpemode}${nbpe}
- echo "dictionary: ${token_list}"
- if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
- ### Task dependent. You have to check non-linguistic symbols used in the corpus.
- echo "stage 2: Dictionary and Json Data Preparation"
- mkdir -p ${feats_dir}/data/lang_char/
- echo "<blank>" > ${token_list}
- echo "<s>" >> ${token_list}
- echo "</s>" >> ${token_list}
- cut -f 2- -d" " ${feats_dir}/data/${train_set}/text > ${feats_dir}/data/lang_char/input.txt
- local/spm_train.py --input=${feats_dir}/data/lang_char/input.txt --vocab_size=${nbpe} --model_type=${bpemode} --model_prefix=${bpemodel} --input_sentence_size=100000000
- local/spm_encode.py --model=${bpemodel}.model --output_format=piece < ${feats_dir}/data/lang_char/input.txt | tr ' ' '\n' | sort | uniq | awk '{print $0}' >> ${token_list}
- echo "<unk>" >> ${token_list}
- fi
- # LM Training Stage
- world_size=$gpu_num # run on one machine
- if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
- echo "stage 3: LM Training"
- fi
- # ASR Training Stage
- world_size=$gpu_num # run on one machine
- if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
- echo "stage 4: ASR Training"
- mkdir -p ${exp_dir}/exp/${model_dir}
- mkdir -p ${exp_dir}/exp/${model_dir}/log
- INIT_FILE=${exp_dir}/exp/${model_dir}/ddp_init
- if [ -f $INIT_FILE ];then
- rm -f $INIT_FILE
- fi
- init_method=file://$(readlink -f $INIT_FILE)
- echo "$0: init method is $init_method"
- for ((i = 0; i < $gpu_num; ++i)); do
- {
- rank=$i
- local_rank=$i
- gpu_id=$(echo $CUDA_VISIBLE_DEVICES | cut -d',' -f$[$i+1])
- train.py \
- --task_name asr \
- --gpu_id $gpu_id \
- --use_preprocessor true \
- --split_with_space false \
- --bpemodel ${bpemodel}.model \
- --token_type $token_type \
- --token_list $token_list \
- --data_dir ${feats_dir}/data \
- --train_set ${train_set} \
- --valid_set ${valid_set} \
- --cmvn_file ${feats_dir}/data/${train_set}/cmvn/am.mvn \
- --speed_perturb ${speed_perturb} \
- --resume true \
- --output_dir ${exp_dir}/exp/${model_dir} \
- --config $asr_config \
- --ngpu $gpu_num \
- --num_worker_count $count \
- --multiprocessing_distributed true \
- --dist_init_method $init_method \
- --dist_world_size $world_size \
- --dist_rank $rank \
- --local_rank $local_rank 1> ${exp_dir}/exp/${model_dir}/log/train.log.$i 2>&1
- } &
- done
- wait
- fi
- # Testing Stage
- if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
- echo "stage 5: Inference"
- for dset in ${test_sets}; do
- asr_exp=${exp_dir}/exp/${model_dir}
- inference_tag="$(basename "${inference_config}" .yaml)"
- _dir="${asr_exp}/${inference_tag}/${inference_asr_model}/${dset}"
- _logdir="${_dir}/logdir"
- if [ -d ${_dir} ]; then
- echo "${_dir} is already exists. if you want to decode again, please delete this dir first."
- exit 0
- fi
- mkdir -p "${_logdir}"
- _data="${feats_dir}/data/${dset}"
- key_file=${_data}/${scp}
- num_scp_file="$(<${key_file} wc -l)"
- _nj=$([ $inference_nj -le $num_scp_file ] && echo "$inference_nj" || echo "$num_scp_file")
- split_scps=
- for n in $(seq "${_nj}"); do
- split_scps+=" ${_logdir}/keys.${n}.scp"
- done
- # shellcheck disable=SC2086
- utils/split_scp.pl "${key_file}" ${split_scps}
- _opts=
- if [ -n "${inference_config}" ]; then
- _opts+="--config ${inference_config} "
- fi
- ${infer_cmd} --gpu "${_ngpu}" --max-jobs-run "${_nj}" JOB=1:"${_nj}" "${_logdir}"/asr_inference.JOB.log \
- python -m funasr.bin.asr_inference_launch \
- --batch_size 1 \
- --ngpu "${_ngpu}" \
- --njob ${njob} \
- --gpuid_list ${gpuid_list} \
- --data_path_and_name_and_type "${_data}/${scp},speech,${type}" \
- --cmvn_file ${feats_dir}/data/${train_set}/cmvn/am.mvn \
- --key_file "${_logdir}"/keys.JOB.scp \
- --asr_train_config "${asr_exp}"/config.yaml \
- --asr_model_file "${asr_exp}"/"${inference_asr_model}" \
- --output_dir "${_logdir}"/output.JOB \
- --mode asr \
- ${_opts}
- for f in token token_int score text; do
- if [ -f "${_logdir}/output.1/1best_recog/${f}" ]; then
- for i in $(seq "${_nj}"); do
- cat "${_logdir}/output.${i}/1best_recog/${f}"
- done | sort -k1 >"${_dir}/${f}"
- fi
- done
- python utils/compute_wer.py ${_data}/text ${_dir}/text ${_dir}/text.cer
- tail -n 3 ${_dir}/text.cer > ${_dir}/text.cer.txt
- cat ${_dir}/text.cer.txt
- done
- fi
|