|
|
2 роки тому | |
|---|---|---|
| .. | ||
| README.md | 2 роки тому | |
| README_zh.md | 2 роки тому | |
| finetune.py | 2 роки тому | |
| infer.py | 2 роки тому | |
| infer.sh | 2 роки тому | |
| utils | 2 роки тому | |
(简体中文|English)
Note: The modelscope pipeline supports all the models in model zoo to inference and finetine. Here we take the typic models as examples to demonstrate the usage.
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
inference_pipeline = pipeline(
task=Tasks.auto_speech_recognition,
model='damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch',
)
rec_result = inference_pipeline(audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav')
print(rec_result)
inference_pipeline = pipeline(
task=Tasks.auto_speech_recognition,
model='damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-online',
model_revision='v1.0.6',
update_model=False,
mode='paraformer_streaming'
)
import soundfile
speech, sample_rate = soundfile.read("example/asr_example.wav")
chunk_size = [5, 10, 5] #[5, 10, 5] 600ms, [8, 8, 4] 480ms
param_dict = {"cache": dict(), "is_final": False, "chunk_size": chunk_size}
chunk_stride = chunk_size[1] * 960 # 600ms、480ms
# first chunk, 600ms
speech_chunk = speech[0:chunk_stride]
rec_result = inference_pipeline(audio_in=speech_chunk, param_dict=param_dict)
print(rec_result)
# next chunk, 600ms
speech_chunk = speech[chunk_stride:chunk_stride+chunk_stride]
rec_result = inference_pipeline(audio_in=speech_chunk, param_dict=param_dict)
print(rec_result)
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
inference_pipeline = pipeline(
task=Tasks.auto_speech_recognition,
model='damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-online',
model_revision='v1.0.6',
update_model=False,
mode="paraformer_fake_streaming"
)
audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav'
rec_result = inference_pipeline(audio_in=audio_in)
print(rec_result)
Full code of demo, please ref to demo
There are three decoding mode for UniASR model(fast、normal、offline), for more model details, please refer to docs
decoding_model = "fast" # "fast"、"normal"、"offline"
inference_pipeline = pipeline(
task=Tasks.auto_speech_recognition,
model='damo/speech_UniASR_asr_2pass-minnan-16k-common-vocab3825',
param_dict={"decoding_model": decoding_model})
rec_result = inference_pipeline(audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav')
print(rec_result)
The decoding mode of fast and normal is fake streaming, which could be used for evaluating of recognition accuracy.
Full code of demo, please ref to demo
Undo
For more model details, please refer to docs
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
inference_pipeline = pipeline(
task=Tasks.auto_speech_recognition,
model='NPU-ASLP/speech_mfcca_asr-zh-cn-16k-alimeeting-vocab4950',
model_revision='v3.0.0'
)
rec_result = inference_pipeline(audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav')
print(rec_result)
task: Tasks.auto_speech_recognitionmodel: model name in model zoo, or model path in local diskngpu: 1 (Default), decoding on GPU. If ngpu=0, decoding on CPUncpu: 1 (Default), sets the number of threads used for intraop parallelism on CPUoutput_dir: None (Default), the output path of results if setbatch_size: 1 (Default), batch size when decoding
audio_in: the input to decode, which could be:
e.g.: asr_example.wav,e.g.: asr_example.pcm,e.g.: bytes data from a microphonee.g.: audio, rate = soundfile.read("asr_example_zh.wav"), the dtype is numpy.ndarray or torch.Tensorwav.scp, kaldi style wav list (wav_id \t wav_path), e.g.:
asr_example1 ./audios/asr_example1.wav
asr_example2 ./audios/asr_example2.wav
In this case of wav.scp input, output_dir must be set to save the output results
audio_fs: audio sampling rate, only set when audio_in is pcm audio
output_dir: None (Default), the output path of results if set
FunASR also offer recipes egs_modelscope/asr/TEMPLATE/infer.sh to decode with multi-thread CPUs, or multi GPUs.
infer.shmodel: model name in model zoo, or model path in local diskdata_dir: the dataset dir needs to include wav.scp. If ${data_dir}/text is also exists, CER will be computedoutput_dir: output dir of the recognition resultsbatch_size: 64 (Default), batch size of inference on gpugpu_inference: true (Default), whether to perform gpu decoding, set false for CPU inferencegpuid_list: 0,1 (Default), which gpu_ids are used to infernjob: only used for CPU inference (gpu_inference=false), 64 (Default), the number of jobs for CPU decodingcheckpoint_dir: only used for infer finetuned models, the path dir of finetuned modelscheckpoint_name: only used for infer finetuned models, valid.cer_ctc.ave.pb (Default), which checkpoint is used to inferdecoding_mode: normal (Default), decoding mode for UniASR model(fast、normal、offline)hotword_txt: None (Default), hotword file for contextual paraformer model(the hotword file name ends with .txt") bash infer.sh \
--model "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \
--data_dir "./data/test" \
--output_dir "./results" \
--batch_size 64 \
--gpu_inference true \
--gpuid_list "0,1"
bash infer.sh \
--model "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \
--data_dir "./data/test" \
--output_dir "./results" \
--gpu_inference false \
--njob 64
The decoding results can be found in $output_dir/1best_recog/text.cer, which includes recognition results of each sample and the CER metric of the whole test set.
If you decode the SpeechIO test sets, you can use textnorm with stage=3, and DETAILS.txt, RESULTS.txt record the results and CER after text normalization.
import os
from modelscope.metainfo import Trainers
from modelscope.trainers import build_trainer
from funasr.datasets.ms_dataset import MsDataset
from funasr.utils.modelscope_param import modelscope_args
def modelscope_finetune(params):
if not os.path.exists(params.output_dir):
os.makedirs(params.output_dir, exist_ok=True)
# dataset split ["train", "validation"]
ds_dict = MsDataset.load(params.data_path)
kwargs = dict(
model=params.model,
data_dir=ds_dict,
dataset_type=params.dataset_type,
work_dir=params.output_dir,
batch_bins=params.batch_bins,
max_epoch=params.max_epoch,
lr=params.lr,
mate_params=params.param_dict)
trainer = build_trainer(Trainers.speech_asr_trainer, default_args=kwargs)
trainer.train()
if __name__ == '__main__':
params = modelscope_args(model="damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch", data_path="./data")
params.output_dir = "./checkpoint" # m模型保存路径
params.data_path = "./example_data/" # 数据路径
params.dataset_type = "small" # 小数据量设置small,若数据量大于1000小时,请使用large
params.batch_bins = 2000 # batch size,如果dataset_type="small",batch_bins单位为fbank特征帧数,如果dataset_type="large",batch_bins单位为毫秒,
params.max_epoch = 20 # 最大训练轮数
params.lr = 0.00005 # 设置学习率
init_param = [] # 初始模型路径,默认加载modelscope模型初始化,例如: ["checkpoint/20epoch.pb"]
freeze_param = [] # 模型参数freeze, 例如: ["encoder"]
ignore_init_mismatch = True # 是否忽略模型参数初始化不匹配
use_lora = False # 是否使用lora进行模型微调
params.param_dict = {"init_param":init_param, "freeze_param": freeze_param, "ignore_init_mismatch": ignore_init_mismatch}
if use_lora:
enable_lora = True
lora_bias = "all"
lora_params = {"lora_list":['q','v'], "lora_rank":8, "lora_alpha":16, "lora_dropout":0.1}
lora_config = {"enable_lora": enable_lora, "lora_bias": lora_bias, "lora_params": lora_params}
params.param_dict.update(lora_config)
modelscope_finetune(params)
python finetune.py &> log.txt &
Modify finetune training related parameters in finetune.py
output_dir: result dirdata_dir: the dataset dir needs to include files: train/wav.scp, train/text; validation/wav.scp, validation/textdataset_type: for dataset larger than 1000 hours, set as large, otherwise set as smallbatch_bins: batch size. For dataset_type is small, batch_bins indicates the feature frames. For dataset_type is large, batch_bins indicates the duration in msmax_epoch: number of training epochlr: learning rateinit_param: [](Default), init model path, load modelscope model initialization by default. For example: ["checkpoint/20epoch.pb"]freeze_param: [](Default), Freeze model parameters. For example:["encoder"]ignore_init_mismatch: True(Default), Ignore size mismatch when loading pre-trained modeluse_lora: False(Default), Fine-tuning model use lora, more detail please refer to LORATraining data formats:
cat ./example_data/text
BAC009S0002W0122 而 对 楼 市 成 交 抑 制 作 用 最 大 的 限 购
BAC009S0002W0123 也 成 为 地 方 政 府 的 眼 中 钉
english_example_1 hello world
english_example_2 go swim 去 游 泳
cat ./example_data/wav.scp
BAC009S0002W0122 /mnt/data/wav/train/S0002/BAC009S0002W0122.wav
BAC009S0002W0123 /mnt/data/wav/train/S0002/BAC009S0002W0123.wav
english_example_1 /mnt/data/wav/train/S0002/english_example_1.wav
english_example_2 /mnt/data/wav/train/S0002/english_example_2.wav
Then you can run the pipeline to finetune with:
python finetune.py
If you want finetune with multi-GPUs, you could:
CUDA_VISIBLE_DEVICES=1,2 python -m torch.distributed.launch --nproc_per_node 2 finetune.py > log.txt 2>&1
Setting parameters in egs_modelscope/asr/TEMPLATE/infer.sh is the same with docs, model is the model name from modelscope, which you finetuned.
Decode with multi GPUs:
bash infer.sh \
--model "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \
--data_dir "./data/test" \
--output_dir "./results" \
--batch_size 64 \
--gpu_inference true \
--gpuid_list "0,1" \
--checkpoint_dir "./checkpoint" \
--checkpoint_name "valid.cer_ctc.ave.pb"
Decode with multi-thread CPUs:
bash infer.sh \
--model "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \
--data_dir "./data/test" \
--output_dir "./results" \
--gpu_inference false \
--njob 64 \
--checkpoint_dir "./checkpoint" \
--checkpoint_name "valid.cer_ctc.ave.pb"