|
|
2 yıl önce | |
|---|---|---|
| .. | ||
| README.md | 2 yıl önce | |
| infer.py | 2 yıl önce | |
Note: The modelscope pipeline supports all the models in model zoo to inference and finetine. Here we take the model of xvector_sv as example to demonstrate the usage.
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
inference_sv_pipline = pipeline(
task=Tasks.speaker_verification,
model='damo/speech_xvector_sv-zh-cn-cnceleb-16k-spk3465-pytorch'
)
# The same speaker
rec_result = inference_sv_pipline(audio_in=(
'https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/sv_example_enroll.wav',
'https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/sv_example_same.wav'))
print("Similarity", rec_result["scores"])
# Different speakers
rec_result = inference_sv_pipline(audio_in=(
'https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/sv_example_enroll.wav',
'https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/sv_example_different.wav'))
print("Similarity", rec_result["scores"])
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
# Define extraction pipeline
inference_sv_pipline = pipeline(
task=Tasks.speaker_verification,
model='damo/speech_xvector_sv-zh-cn-cnceleb-16k-spk3465-pytorch'
)
# Extract speaker embedding
rec_result = inference_sv_pipline(
audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/sv_example_enroll.wav')
speaker_embedding = rec_result["spk_embedding"]
Full code of demo, please ref to infer.py.
task: Tasks.speaker_verificationmodel: model name in model zoo, or model path in local diskngpu: 1 (Default), decoding on GPU. If ngpu=0, decoding on CPUoutput_dir: None (Default), the output path of results if setbatch_size: 1 (Default), batch size when decodingsv_threshold: 0.9465 (Default), the similarity threshold to determine
whether utterances belong to the same speaker (it should be in (0, 1))audio_in: the input to process, which could be:
e.g.: https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/sv_example_enroll.wave.g.: path/to/a.wavwav.scp: e.g.: path/to/wav1.scp
wav.scp
test1 path/to/enroll1.wav
test2 path/to/enroll2.wav
bytes: e.g.: raw bytes data from a microphone
fbank1.scp,speech,kaldi_ark: e.g.: extracted 80-dimensional fbank features
with kaldi toolkits.
audio_in: the input to process, which could be:
e.g.: (https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/sv_example_enroll.wav, https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/sv_example_different.wav)e.g.: (path/to/a.wav, path/to/b.wav)Tuple(wav1.scp, wav2.scp): e.g.: (path/to/wav1.scp, path/to/wav2.scp)
wav1.scp
test1 path/to/enroll1.wav
test2 path/to/enroll2.wav
wav2.scp
test1 path/to/same1.wav
test2 path/to/diff2.wav
Tuple(bytes, bytes): e.g.: raw bytes data from a microphone
Tuple("fbank1.scp,speech,kaldi_ark", "fbank2.scp,speech,kaldi_ark"): e.g.: extracted 80-dimensional fbank features
with kaldi toolkits.
Use wav1.scp or fbank.scp to organize your own data to extract speaker embeddings or perform speaker verification.
In this case, the output_dir should be set to save all the embeddings or scores.
You can inference with multi-threads on CPU as follow steps:
ngpu=0 while defining the pipeline in infer.py.Split wav.scp to several files e.g.: 4
split -l $((`wc -l < wav.scp`/4+1)) --numeric-suffixes wav.scp splits/wav.scp.
Start to extract embeddings
for wav_scp in `ls splits/wav.scp.*`; do
infer.py ${wav_scp} outputs/$((basename ${wav_scp}))
done
The embeddings will be saved in outputs/*
Similar to inference on CPU, the difference are as follows:
Step 1. Set ngpu=1 while defining the pipeline in infer.py.
Step 3. specify the gpu device with CUDA_VISIBLE_DEVICES:
for wav_scp in `ls splits/wav.scp.*`; do
CUDA_VISIBLE_DEVICES=1 infer.py ${wav_scp} outputs/$((basename ${wav_scp}))
done